Extraction and Characterization of Pharmaceutical Grade Microcrystalline Cellulose From Bambara Nut (Voandzeia Subterranean (L) Thousars) Husk

Authors

  • E. Agboeze Department of Industrial Chemistry, Enugu State University of Science and Technology, Enugu State, Nigeria
  • N. P. Ani Department of Industrial Chemistry, Enugu State University of Science and Technology, Enugu State, Nigeria
  • E. O. Omeje Department of Pure and Industrial Chemistry, University of Nigeria Nsukka, Enugu State, Nigeria

Keywords:

Extraction, Characterization, Bambara nut husk, Microcrystalline cellulose

Abstract

Microcrystalline cellulose is a vital ingredient in the food, pharmaceutical, and cosmetics industries. In this study, Bambara nutshell microcrystalline cellulose (BNS-MCC) was prepared by acid hydrolysis modification of Bambara nutshell alpha-cellulose pulp. The sample was subjected to sodium hydroxide pulping (2.0% and 17.5% NaOH respectively) and a multistage pulping treatment using 3.5% nitric acid. The analysis results showed that the pulping method was effective for substantial removal of lignin with a 14.416% yield of alpha-cellulose pulp. The organoleptic and physicochemical properties of BNS-MCC were examined. The prepared BNS-MCC powder was examined using a Scanning Electron Microscope (SEM), Fourier Transform Infrared spectroscopy (FTIR), and X-ray Diffractometer (XRD). The sample’s powder flow properties (true density, Hausner index, Carr’s index, angle of repose,
powder porosity, loss on drying, and moisture sorption capacity) were (1.216g/mL, 1.34, 25.75%, 39.80o, 64.7%, and 46.81%). The results of the analysis of the BNS-MCC compared well with commercial grades and conformed to US Pharmacopeia (USP) and British Pharmacopeia specifications. This result shows that Bambara nutshells have potential application for pharmaceutical grade cellulose production used in direct compression tableting.

Dimensions

X. Shao, J. Wang, Z. Liu, N. Hu, M. Liu & Y. Xu, “Preparation and Characterization of Porous Microcrystalline Cellulose from Corncob”, Industrial Crops and Products 112457 (2020).

B. Sun, M. Zhang & Y. Ni, “Use of sulfated cellulose nanocrystals towards stability enhancement of gelatin-encapsulated tea polyphenols”, Cellulose 25 (2018). 1.

N. Y. Abu-Thabit, A. A. Judeh, A. S. Hakeem, A. Ul-Hamid, Y. Umar & A. Ahmad, “Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L.)”, International Journal of Biological Macromolecules 155 (2020) 1.

B. Deepa, E. Abraham, N. Cordeiro, M. Mozetic, A. P. Mathew, K. Oksman & L. A. Pothan, “Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study”, Cellulose 2 (2015) 1.

D. Haldar & M. K. Purkait, “Micro and nanocrystalline cellulose derivatives of lignocellulosic biomass: A review on synthesis, applications and advancements”, Carbohydrate Polymers 116937 (2020) 1.

B. Ates, S. Koytepe, A. Ulu, C. Gurses & V. K. Thakur, “Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources”, Chemical Reviews (2020) 1.

R. J. Moon, A. Martini, J. Nairn, J. Simonsen & J. Youngblood, “Cellulose nanomaterials review: structure, properties and nanocomposite”, Chemical Society Reviews (2011) 3941.

J. N. BeMiller, “One hundred years of commercial food carbohydrates in the United States”, Journal of Agricultural and Food Chemistry 18 (2009) 8125.

R. Rowe, P. Sheskey & M. Quinn, Handbook of Pharmaceutical Excipients, London: Pharmaceutical Press (2009).

A. Y. Chaerunisaa, S. Sriwidodo & M. Abdassah, “Microcrystalline Cellulose as Pharmaceutical Excipient. In Pharmaceutical Formulation Design-Recent Practices”, IntechOpen (2019) 1.

G. Thoorens, F. Krier, B. Leclercq, B. Carlin & B. Evrard, “ Microcrystalline cellulose, a direct compression binder in a quality by design environment—A review”, International journal of pharmaceutics 473 (2014) 64.

G. Thoorens, F. Krier, E. Rozet, B. Carlin & B. & Evrard, “ Understanding the impact of microcrystalline cellulose physicochemical properties on tabletability”, International journal of pharmaceutics 490 (2015) 47.

C. P. Azubuike & A. O. Okhamafe, “Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs”, International Journal of Recycling of Organic Waste in Agriculture (2012) 1.

A. O. &. A. C. P. Okhamafe, “Direct compression studies on low-cost cellulose derived from maize cob”, J. Pharm. Sci. Pharm. Pract. 2 (1994) 26.

K. C. Ugoeze, N. Nwachukwu & P. C. Anyino, “The E ect of Modification Methods on the Properties of Lentinus Tuber Regium Powders”, Journal of Pharmaceutical Technology, Research and Management 7 (2019) 27.

F. O. Ohwoavworhua, T. A. Adelakun & A. O. Okhamafe, “Processing pharmaceutical grade microcrystalline cellulose from groundnut husk: Extraction methods and characterization.”, International Journal of Green Pharmacy (IJGP) 3 (2009) 1.

F. O. Ohwoavworhua, O. O. Kunle & S. I. Ofoefule, “Extraction and characterization of microcrystalline cellulose derived from Luffa cylindrica plant”, African Journal of Pharmaceutical Research and Development 1 (2004) 1.

F. O. Ohwoavworhua & T. A. Adelakun, “Some physical characteristics of microcrystalline cellulose obtained from raw cotton of Cochlospermum planchonii”, Tropical Journal of Pharmaceutical Research 4 (2005) 501.

D. K. Sidiras, D. P. Koullas, A. G. Vgenopoulos & E. G. Koukios, “Cellulose crystallinity as a ected by various technical processes”, Materials Science Paper & Wood (1990).

A. D. French, “Idealized powder di raction patterns for cellulose polymorphs.”, Cellulose 21 (2014) 885.

W. Schutyser, A. T. Renders, S. Van den Bosch, S. F. Koelewijn, G. T. Beckham & B. F. Sels, “Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading”, Chemical Society Reviews 47 (2018) 852.

S. M. Fadel, W. S. Abou-Elseoud, E. A. Hassan, S. Ibrahim & M. L. Hassan, “Use of sugar beet cellulose nanofibers for paper coating”, Industrial Crops and Products 180 (2022) 114787.

L. Allen & H. C. Ansel, Ansel’s pharmaceutical dosage forms and drug delivery systems, New York: Lippincott Williams & Wilkins (2013).

D. Train, “Some aspects of the property of angle of repose of powders”, Journal of Pharmacy and Pharmacology 10 (1958) 127T.

A. F. Tarchoun, D. Trache & T. M. Klapotke, “Microcystalline cellulose from Posidonia oceanica brown algae: Extraction and characterization”, International Journal of Biological Macromolecule 138 (2019) 837.

M. Rouabah, S. Bourgeois, S. Brianc¸on & C. Cogn´e, “A numerical tool to predict powder behaviour for pharmaceutical handling and processing”, Journal of Drug Delivery Science and Technology 70 (2022) 103258.

J. D. Audu-Peter, J. E. Ojile & P. G. Bhatia, “Physicochemical and powder properties of alpha-and microcrystalline-cellulose derived from maize cobs.”, Journal of Pharmacy & Bioresources 1 (2004) 41.

L. H. Zaini, M. Jonoobi, P. M. Tahir & S. Karimi, “Isolation and characterization of cellulose whiskers from kenaf (Hibiscus cannabinus L.) bast fibers”, (2013) 1.

H. A. Krassig, Cellulose: Structure, Accessibility, and Reactivity, Yverdon: Gordon and Breach Science (1993).

M. H. Sainorudin, N. A. Abdullah, M. S. A. Rani, M. Mohammad, M, Mahizan, N. Shadan, N. H. A. Kadir, Z. Yaakob, A. El-Denglawey & M. Alam, “Structural characterization of microcrystalline and nanocrystalline cellulose from Ananas comosus L. leaves: Cytocompatibility and molecular docking studies”, Nanotechnology Reviews 10 (2021) 793.

X. Yue, J. He, T. Li & Y. Xu, “Preparing lignin-rich microcrystalline cellulose from spruce chemithermomechanical pulp fiber by Fe3+ enhanced high temperature liquid water treatment”, Cellulose 28 (2021) 1405.

J. Nsor-Atindana, M. Chen, H. D. Go , F. Zhong, H. R. Sharif & Y. Li, “Functionality and nutritional aspects of microcrystalline cellulose in food”, Carbohydrate Polymers 172 (2017) 159.

R. C. Rowe, P. Sheskey & M. Quinn, Handbook of pharmaceutical excipients, Libros Digitales-Pharmaceutical Press, (2009).

M. M. Haafiz, S. J. Eichhorn, A. Hassan & M. Jawaid, “Isolation and characterization of microcrystalline cellulose from oil palm biomass residue”, Carbohydrate Polymers (2013) 628.

C. C. Nwajiobi, J. O. E. Otaigbe & O. Oriji, “Physicochemical, spectroscopic and tableting properties of microcrystalline cellulose obtained from the African breadfruit seed hulls”, African Journal of Biotechnology 18 (2019) 371.

Published

2022-08-29

How to Cite

Extraction and Characterization of Pharmaceutical Grade Microcrystalline Cellulose From Bambara Nut (Voandzeia Subterranean (L) Thousars) Husk. (2022). African Scientific Reports, 1(2), 103–114. https://doi.org/10.46481/asr.2022.1.2.31

Issue

Section

Original Research

How to Cite

Extraction and Characterization of Pharmaceutical Grade Microcrystalline Cellulose From Bambara Nut (Voandzeia Subterranean (L) Thousars) Husk. (2022). African Scientific Reports, 1(2), 103–114. https://doi.org/10.46481/asr.2022.1.2.31