Synthesis and characterization of ZnO crystalline powder: effect on Alkaline pH

Authors

  • A. A. Ibiyemi Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • B. M. Akinroye Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • O. P. Oladipo Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • I. E. Olaoye Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • M. T. Olatunji Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • T. I. Ogunniran Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • A. T. Oladimeji Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • A. O. Ogungbe Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • A. S. Olatunde Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • G. O. Ogunyemi Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • S. K. Aminu Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • A. F. Ojo Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • A. Adewole Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • J. I. Lawal Department of Physics, Federal University, Oye-Ekiti, Nigeria
  • A. C. Adeniran Department of Physics, Osun State College of Technology, Esa Oke, Nigeria

Keywords:

Optoelectronics, pH, Transmittance, Absorbance, ZnO

Abstract

Zinc Oxide nanoparticles (ZnO NPs) were effectively produced using the co-precipitation method in alkaline solutions with pH values of 8, 10, and 12. The X-ray diffraction (XRD) investigation indicates that the preferred orientation for the formation of ZnO phase and wurtzite-hexagonal structure is the (101) reflection plane. The crystallite size of ZnO produced at pH 8, 10, and 12 are 29.74, 17.83, and 12.64 nm, respectively. The scanning electron microscope (SEM) result revealed spongy-like morphology and spherical grains nanostructure at all pH level. XRD analysis demonstrated that the hexagonal wurtzite structure is present in the ZnO nanostructure. The energy band gap is decreased with increasing pH. The smooth and uniform shape of sample synthesized at pH 12 with large-scale homogeneity is an important point, this suggests that these nanoparticles may be useful for photodetectors. Because of its high optical gain, the ZnO NPs synthesized at pH 8 exhibits the best optical characteristics, whereas the ZnO NPs created at pH 12 exhibits optical losses for optoelectronics device application. This work has shown that altering the precursor’s pH altered the zinc oxide sample for a range of industrial uses. For example, using pH 12 greatly raised the absorbance value, showing that ZnO is a promising photovoltaic (PV) material and ultraviolet (UV) detector since its light absorption is much boosted at high pH values. Meanwhile, the addition pH 8 greatly raised the transmittance value, demonstrating that ZnO’s visible light transparency is significantly enhanced at low pH levels in alkaline medium, making it a potential optoelectronics material and active infrared detector. According to the study’s findings, ZnO NPs has use in photovoltaic materials, optoelectronics, and UV and infrared detectors.

Dimensions

[1] I. L. Ikhioya, E. U. Onoh, A. C. Nkele, B. C. Abor, B. C. N. Obitte, M. Maaza & F. I. Ezema, “The green synthesis of copper oxide nanoparticles using the moringa oleifera plant and its subsequent characterization for use in energy storage applications”, East Eur. J. Phys. 1 (2023) 162. https://periodicals.karazin.ua/eejp/article/view/21046.

[2] S. O. Samuel, M. L. Frank, E. P. Ogherohwo, A. Ekpekpo, J. T. Zhimwang & I. L. Ikhioya, “Influence of deposition voltage on strontium sulphide doped silver for optoelectronic application”, East Eur. J. Phys. 1 (2023) 189. https://periodicals.karazin.ua/eejp/article/view/21094.

[3] I. L. Ikhioya, U. O. Faith & I. U. Courage, “Impact of modulated temperature on photovoltaic properties of automated spray fabricated zirconium doped cobalt selenide films”, Mater. Res. Innov. 27 (2023) 382. https://www.tandfonline.com/doi/abs/10.1080/14328917.2023.2178747.

[4] I. L. Ikhioya, U. O. Edwin, N. O. Donald & J. E. Azubuike, “Impact of bismuth as dopant on ZnSe material syntheses for photovoltaic application”, Mater. Res. Innov. 27 (2023) 411. https://www.tandfonline.com/doi/abs/10.1080/14328917.2023.2180582.

[5] L. I. Imosobomeh, I. A. Nwamaka & F. U. Ochai-Ejeh, “Influence of erbium (Er) dopant on the enhanced optical properties of electrochemically deposited zinc oxide (ZnO) films for high-performance photovoltaic systems”, Optik 252 (2022) 168486. https://www.sciencedirect.com/science/article/abs/pii/S0030402621019872.

[6] R. Dutta, S. Chattopadhyay, A. Sarkar, M. Chakrabarti, D. Sanyal & D. Jana, “Role of defects in tailoring structural, electrical and optical properties of ZnO”, Progress in Materials Science 54 (2009) 89. https://www.sciencedirect.com/science/article/abs/pii/S0079642508000698.

[7] A. Ali, A. Nadiah, T. Ter, J. Hidayani, A. Syamsir & M. L. Rahimi. “Optical and Structural Properties of Controlled pH Variation on Zinc Oxide Nanostructured via Hydrothermal Method”, Key Engineering Materials 908 (2022) 253. https://doi.org/10.4028/p-w3o207.

[8] P. K. Giri, S. Bhattacharyya, Dilip K. Singh, R. Kesavamoorthy, B. K. Panigrahi & K. G. M. Nair, “Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling”, Journal of Applied Physics 102 (2007) 093515. https://cir.nii.ac.jp/crid/1362262946454599936.

[9] S. Ghosh, A. Ghosh, S. Pramanik, K. K. Probodh, R. Sen & S. K. Neogi. “Synthesis of ZnO nanoparticles by co-precipitation technique and characterize the structural and optical properties of these nanoparticles”, Journal of Physics: Conference Series. 2349 (2022) 012014. https://iopscience.iop.org/article/10.1088/1742-6596/2349/1/012014/meta.

[10] l. Tereshchenko, M. Bechelany, R. Viter, V. Khranovskyy, V. Smyntyna, N. Starodub & R. Yakimova. “Optical biosensors based on ZnO nanostructures: advantages and perspectives”, A review, Sensors and Actuators B: Chemical 229 (2016) 664. https://www.sciencedirect.com/science/article/abs/pii/S0925400516300995.

[11] S. Ghosh, G. Khan, B. Das & K. Mandal. “Defect-driven magnetism in luminescent n/p-type and Gd-substituted SnO2 nanocrystalline thin films”, Journal of Applied Physics 109 (2011) 123927. https://pubs.acs.org/doi/abs/10.1021/am300023a.

[12] R. Baghdad, B. Kharroubi, A. Abdiche, M. Bousmaha, M. A. Bezzerrouk, A. Zeinert, M. El Marssi, K. Zellama, “Mn doped ZnO nanostructured thin films prepared by ultrasonic spray pyrolysis method”, Superlattices and Microstructures 52 (2012) 711. https://www.sciencedirect.com/science/article/abs/pii/S0749603612001875.

[13] S. K. Neogi, A. M. Ahmed, A. Banerjee & S. Bandyopadhyay, “Enhanced ferromagnetism by ion irradiation for substitutionally cobalt doped ZnO films”, Applied Surface Science 481 (2019) 443. https://www.sciencedirect.com/science/article/abs/pii/S0169433219307731.

[14] G. Soumyadev, G. Abhishek, P. Subhamay, K. K. Probodh, S. Rupam & K. N. Swarup, “Synthesis of ZnO nanoparticles by co-precipitation technique and characterize the structural and optical properties of these nanoparticles”, Journal of Physics: Conference Series 2349 (2022) 012014. https://doi.org/10.1088/1742-6596/2349/1/012014.

[15] A. H. Zyoud, A. Zubi, S. H. Zyoud, M. H. Hilal, S. Zyoud, N. Qamhieh, A. Hajamohideen & H. S. Hilal, “Kaolin-supported ZnO nanoparticle catalysts in self-sensitized tetracycline photodegradation: Zero-point charge and pH effects”, Appl. Clay Sci. 182 (2019) 105294. https://www.sciencedirect.com/science/article/abs/pii/S0169131719303527.

[16] N. P. Shetti, S. J. Malode, D. S. Nayak, G. B. Bagihalli, S. S. Kalanur, R. S. Malladi, C. V. Reddy, T. M. Aminabhavi & K. R. Reddy, “Fabrication of ZnO nanoparticles modifed sensor for electrochemical oxidation of methdilazine”, Appl. Surf. Sci. 496 (2019) 143656. https://www.sciencedirect.com/science/article/abs/pii/S0169433219324535.

[17] S. Arya, P. Mahajan, S. Mahajan, A. Khosla, R. Datt, V. Gupta, S. J. Young, S. K. Oruganti, “Review—Infuence of Processing Parameters to Control Morphology and Optical Properties of Sol-Gel Synthesized ZnO Nanoparticles”, ECS J. Solid State Sci. Technol. 10 (2021) 23002. https://iopscience.iop.org/article/10.1149/2162-8777/abe095/meta.

[18] N. F. Khairol & N. Sapawe, “Electrosynthesis of ZnO nanoparticles deposited onto egg shell for degradation of Congo red”, Mater. Today Proc. 5 (2018) 21936. https://www.sciencedirect.com/science/article/abs/pii/S2214785318318522.

[19] V. Koutu, S. Shastri & M. M. Malik, “Effect of NaOH concentration on optical properties of zinc oxide nanoparticles”, Materials Science Poland 34 (2016) 819. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-a44d6897-759d-463c-bc5e-d84df744132f.

[20] L. I. Imosobomeh & C. N. Agnes, “Properties of electrochemically-deposited NiTe films doped with molybdenum at varying temperatures”, Results in Optics 12 (2023) 100494. https://www.sciencedirect.com/science/article/pii/S2666950123001463.

[21] R. Ravi, K. K. Choudhary & K. Netram. “The Structural and Optical Properties of Zinc-Oxide Nanomaterials Synthesized via Thermal Decomposition Method”, Journal of Physics: Conference Series 2603 (2023) 012003. https://iopscience.iop.org/article/10.1088/1742-6596/2603/1/012003/meta.

[22] R. J. Peverga, M. C. Khaled, Y. Yushamdan, A. Nathan-Abutu , V. M. Igba, E. Danladi, O. S. Obaseki, M. B. Ochang, W. V. Zhiya & F. K. Yam, “An Alternative Method for Estimating the Phase Fraction of Multiphase Nanomaterials: Analysis from X-ray Diffraction”, Journal of Applied Sciences and Nanotechnology 3 (2023) 1222. https://doi.org/10.53293/jasn.2023.7002.1222.

[23] V. N. Morris, R. A. Farrell, A. M. Sexton & M. A. Morris, “Lattice Constant Dependence on Particle Size for Ceria prepared from a Citrate Sol-Gel”, Journal of Physics: Conference Series 26 (2006) 119. https://iopscience.iop.org/article/10.1088/1742-6596/26/1/028/meta.

[24] S. Saleem, M. N. Ashiq, S. Manzoor, U. Ali, R. Liaqat, A. Algahtani, S. Mujtaba, V. Tirth, A. M. Alsuhaibani, M. S. Refat, A. Ali, M. Aslam, A. Zaman, “Analysis and characterization of opto-electronic properties of iron oxide (Fe2O3) with transition metals (Co, Ni) for the use in

the photodetector application”, Journal of materials research and technology 25 (2023) 6150. https://www.sciencedirect.com/science/article/pii/S2238785423015934.

[25] U. Baishya & D. Sarkar, “Structural and optical properties of zinc sulphide-polyvinyl alcohol (ZnS-PVA) nanocomposite thin films: effect of Zn source concentration”, Bull Mater Sci 34 (2011) 1285. https://link.springer.com/article/10.1007/s12034-011-0316-9.

[26] S. A. Mansour, F. Yakuphanoglu, “Electrical-optical properties of nanofiber ZnO film grown by sol gel method and fabrication of ZnO/p-Si heterojunction”, Solid State Sciences 14 (2012) 12. https://www.sciencedirect.com/science/article/abs/pii/S129325581100344X.

[27] A. A. Ibiyemi, G. T. Yusuf, O. Olubosede, A. Olusola & H. A. Akande, “x-ray photoelectric and magnetic properties of chemically synthesized Cd–Ni Ferrite nanomagnetic particles”, Physica Scripta 97 (2022) 025804. https://iopscience.iop.org/article/10.1088/1402-4896/ac4a95/meta.

[28] G. Bachir, S. L. Eddine, M. Souhaila, B. Abderrhmane, H. Hadia, L. T. Mohammed, T. Gobika, B. Ahmed & M. Farid. “Effect of pH Value on the Band gap Energy and Particles Size for Biosynthesis of ZnO Nanoparticles: Efficiency for Photocatalytic Adsorption of Methyl Orange”, Sustainability 14 (2022) 11300. https://www.mdpi.com/2071-1050/14/18/11300.

[29] R. J. Peverga, E. Danladi, U. I. Ndeze, O. Adedokun, S. Landi, A. J. Haider, A. T. Adepoju, Y. Yusof, O. S. Obaseki & F. K. Yam, “Comment about the use of unconventional Tauc plots for bandgap energy determination of semiconductors using UV–Vis spectroscopy”, Results in Optics 14 (2024) 100606. https://www.sciencedirect.com/science/article/pii/S2666950124000038.

[30] A. Bouafia, S. E. Laouini, M. LTedjani, G. A. M. Ali & A. Barhoum, “Green biosynthesis and physicochemical characterization of Fe3O4 nanoparticles using Punica granatum L. fruit peel extract for optoelectronic applications”, Text. Res. J. 92 (2022) 685. https://journals.sagepub.com/doi/abs/10.1177/00405175211006671.

[31] S. A. Kulkarni, P. S. Sawadh, P. K. Palei & K. K. Kokate, “Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles”. Ceramics International 40 (2014) 1945. https://doi.org/10.1016/J.ceramint.2013.07.103.

[32] P. P. Hankare, R. P. Patil, A. V. Jadhav, R. S. Pandav, K. M. Garadkar, R. Sasikala & A. K. Tripathi, “Synthesis and characterization of nanocrystalline Ti- substituted Zn ferrite”, Journal of Alloys Compound 509 (2011) 2160. https://www.sciencedirect.com/science/article/abs/pii/S0925838810027039.

[33] S. J Pearton, D.P. Norton, K. Ip, Y.W. Heo & T. Steiner, “Recent progress in processing and properties of ZnO, Superlattices and Microstructures”, 34 (2003) 3. https://www.sciencedirect.com/science/article/abs/pii/S0749603603000934.

[34] A.R. Rao & V. Dutta, “Achievement of 4.7% conversion efficiency in ZnO dye-sensitized solar cells fabricated by spray deposition using hydrothermally synthesized nanoparticles”, Nanotechnology 19 (2008) 445712. https://iopscience.iop.org/article/10.1088/0957-4484/19/44/445712/meta.

[35] G. Boschloo, T. Edvinsson, A. Hagfeldt (Eds.), “Dye-sensitized Nanostructured ZnO Electrodes for Solar Cell Applications. Handbook of Nanostructured Materials for Solar Energy Conversion”, In Nanostructured materials for solar energy conversion, Elsevier, 2006, pp.

227–254. https://www.sciencedirect.com/science/article/abs/pii/B9780444528445500093.

[36] S. Anjum, T. Zeeshan, M. Danish Ali, S. Waseem, I. Waseem & Z. Mustafa, “Investigation of cationic distribution, Y–K angles & optical and dielectric properties of as-synthesized cerium-doped cobalt nano-ferrites prepared by co-precipitation method”, Applied Physics A 128

(2022) 383. https://doi.org/10.1007/s00339-022-05470-8.

[37] S. Arshad, A. Hussain, S. Noreen, N. Bibi, M. B. Tahir, J. Rehman, M. Jabeen, H. Benish Munawar & S. Rahman, “Structural, mechanical, electronic and optical properties of MFe2O4 (M=Zn, Cu, Si) ferrites for electrochemical, photocatalytic and optoelectronic applications”, Journal of Solid State Chemistry 330 (2024) 124504. https://www.sciencedirect.com/science/article/abs/pii/S0022459623006722.

[38] L. I. Imosobomeh, O. A. Samson, A. A. Ishaq & I. E. Fabian, “The effect of molybdenum dopant on rare earth metal chalcogenide material”, Chemical Physics Impact 7 (2023) 100269. https://www.sciencedirect.com/science/article/pii/S2667022423001093.

[39] I. L. Imosobomeh, I. A. Nwamaka & U. O. Faith, “Influence of erbium (Er) dopant on the enhanced optical properties of electrochemically deposited zinc oxide (ZnO) films for high-performance photovoltaic systems”, Optik 252 (2022) 168486.

https://www.sciencedirect.com/science/article/abs/pii/S0030402621019872.

[40] I. Ahmad, A. Shakoor, W. Ahmad, A. Hussain, A. S. Iftikhar & I. L. Ikhioya, “The impact of zinc ions on electrode material for energy storage in solvothermal-synthesised graphene-zinc oxide nanocomposites”, Materials Research Innovations 29 (2024) 117. https://www.tandfonline.com/doi/abs/10.1080/14328917.2024.2387404.

[41] M. K. Alqadi, O. A. Abo Noqtah, F. Y. Alzoubi, J. Alzouby & K. Aljarrah “pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction”, Materials Science-Poland 32 (2014) 107. https://link.springer.com/article/10.2478/s13536-013-0166-9.

Published

2025-05-31

How to Cite

Synthesis and characterization of ZnO crystalline powder: effect on Alkaline pH. (2025). African Scientific Reports, 4(2), 225. https://doi.org/10.46481/asr.2025.4.2.225

How to Cite

Synthesis and characterization of ZnO crystalline powder: effect on Alkaline pH. (2025). African Scientific Reports, 4(2), 225. https://doi.org/10.46481/asr.2025.4.2.225