Phosphate solubilization by rhizobacteria isolated from the rhizosphere of Mimosa pudica: an investigation into microbial mobilization of phosphorus

Authors

  • Ray Niofunimbi Izomor Department of Applied Microbiology and Brewing, Nnamdi Azikiwe University, Awka, Nigeria
  • Peace Chidimma Nwankwo Department of Applied Microbiology and Brewing, Nnamdi Azikiwe University, Awka, Nigeria
  • James Ogochukwu Okafoanyali Biotechnology Research Centre, Nnamdi Azikiwe University, Awka, Nigeria

Keywords:

Phosphate, Solubilization, Rhizobacteria, Rhizosphere, Mimosa pudica

Abstract

Phosphorus (P), in addition to nitrogen (N) and potassium (K), makes up the essential macronutrients needed by plants for growth and development. P is also one of the most abundant elements present in the Earth’s crust, and it occurs in both organic and inorganic forms. Although present in high concentrations, only a very minute amount is bioavailable to plants because of its poor solubility due to its high binding affinity to calcium, aluminium, and iron in the soil, forming insoluble calcium phosphate, aluminium phosphate, and ferrous phosphate, thereby becoming recalcitrant for plant utilization. In this study, bacteria isolated from the rhizosphere of Mimosa pudica from different locations at Nnamdi Azikiwe University, Awka, were screened for their ability to solubilize phosphate using point inoculation on Pikovskaya (PVK) media agar plates with tricalcium phosphate (Ca3(PO4)2) as a source of phosphate. The result showed that of the twenty-one (21) rhizobacteria screened, four (4) were able to solubilize phosphate with varying phosphate solubilizing index (PSI). The degrees of PSI were in the following order: isolate SVM5 and UBG13 > isolate UBG14> isolate FEA6. Isolate SVM5 and UBG13 had the highest PSI of 4.0, while isolate FEA6 had the lowest PSI of 3.1. The biochemical tests of the isolates revealed that the phosphate-solubilizing bacteria were members of Klebsiella spp. (FEA6, SVM5, and UBG14) and Pseudomonas sp. (UBG13). This study, therefore, suggests the need to include rhizobacteria as part of biofertilizer formulations to improve plant yield via the solubilization of phosphate into forms that are bioavailable for plant growth.

Dimensions

[1] A. Iftikhar, R. Farooq, M. Akhtar, H. Khalid, N. Hussain, Q. Ali, S. Malook & D. Ali, “Ecological and sustainable implications of phosphorous-solubilizing microorganisms in soil”, Discover Applied Sciences 6 (2024) 33. https://doi.org/10.1007/s42452-024-05683-x.

[2] B. C. Walpola & M. Yoon, “Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: a review”, African Journal of Microbiology Research 6 (2012) 6600. https://doi.org/10.5897/AMJR12.889.

[3] B. Sharma, R. Z. Sayyed, M. H. Trivedi & T. A. Gobi, “Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils”, SpringerPlus 2 (2013) 587. https://doi.org/10.1186/2193-1801-2-587.

[4] A. Iftikhar, N. Aijaz, R. Farooq, S. Aslam, A. Zeeshan, M. Munir, M. Irfan, T. Mehmood, M. Atif & A. Shiraz, “Beneficial role of phosphate solubilizing bacteria (PSB) in enhancing soil fertility through a variety of actions on plants growth and ecological perspective: An updated review”, Journal of Xi’an Shiyou University 19 (2023) 520. http://xisdxjxsu.asia.

[5] M. S. Khan, A. Zaidi & P. A. Wani, “Role of phosphate-solubilizing microorganisms in sustainable agriculture - a review”, Agronomy for Sustainable Development 27 (2007) 29. https://doi.org/10.1051/agro:2006011.

[6] M. Ravunni & A. Yusuf, “Isolation, characterization and phylogenetic analysis of nodule-associated bacteria from Mimosa pudica L.”, Biosciences Biotechnology Research Asia 19 (2022) 645. http://dx.doi.org/10.13005/bbra/3017.

[7] L. Pan & B. Cai, “Phosphate-solubilizing bacteria: advances in their physiology, molecular mechanisms and microbial community effects”, Microorganisms 11 (2023) 2904. https://doi.org/10.3390/microorganisms11122904.

[8] I. Beltran-Medina, F. Romero-Perdomo, L. Molano-Chavez, A. Y. Gutierrez, A. M. M, Silva & G. E. Bonilla, “Inoculation of phosphate-solubilizing bacteria improves soil phosphorus mobilization and maize productivity”, Nutrient Cycling in Agroecosystems 126 (2023) 21. https://doi.org/10.1007/s10705-023-10268-y.

[9] N. Ahmed & S. Shahab, “Phosphate solubilization: their mechanism genetics and application”, The Internet Journal of Microbiology 9 (2009) 1. https://www.ispub.com.

[10] K. Leontidou, S. Genitsaris, A. Papadopoulou, N. Kamou, I. Bosmali, T. Matsi, P. Madesis, D. Vokou, K. Karamanoli & I. Mellidou, “Plant growth promoting rhizobacteria isolated from halophytes and drought tolerant plants: genomic characterisation and exploration of phyto-beneficial traits”, Scientific Reports 10 (2020) 14857. https://doi.org/10.1038/s41598-020-71652-0.

[11] U. Ghosh, P. Subhashini, E. Dilipan, S. Raja, T. Thangaradjou & L. Kannan, “Isolation and characterization of phosphate-solubilizing bacteria from seagrass rhizosphere soil”, Journal of Ocean University of China (Oceanic and Coastal Sea Research) 11 (2012) 86. https://doi.org/10.1007/s11802-012-1844-7.

[12] J. Zhang, P. Wang, L. Fang, Q. A. Zhang, C. Yan & J. Chen, “Isolation and characterization of phosphate-solubilizing bacteria from mushroom residues and their effect on tomato plant growth promotion”, Polish Journal of Microbiology 66 (2017) 57. https://doi.org/10.5604/17331331.1234993.

[13] B. Pati & S. Padhi, “Isolation and characterization of phosphate solubilizing bacteria in saline soil from coastal region of Odisha”, GSC Biological and Pharmaceutical Sciences 16 (2021) 109. https://doi.org/10.30574/gscbps.2021.16.3.0273.

[14] Z. Wang, H. Zhang, L. Liu, S. Li, J. Xie, X. Xue & Y. Jiang, “Screening of phosphate- solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion”, BMC Microbiology 22 (2022) 296. https://doi.org/10.1186/s12866-022-02715-7.

[15] C. B. Gunawardhana, S. J. Ranasinghe & V. Y. Waisundara, “Review: Mimosa pudica Linn.: the garden weed with therapeutic properties”, Israel Journal of Plant Sciences 62 (2015) 234. http://dx.doi.org/10.1080/07929978.2015.1066997.

[16] A. Klonowska, C. Chaintreuil, P. Tisseyre, L. Miche, R. Melkonian, M. Ducousso, G. Laguerre, B. Brunel & L. Moulin, “Biodiversity of Mimosa pudica rhizobial symbionts (Cupriavidus taiwanensis, Rhizobium mesoamericanum) in New Caledonia and their adaptation to heavy metal rich soils”, FEMS Microbiology Ecology 81 (2021) 618. https://doi.org/10.1111/j.1574-6941.2012.01393.x.

[17] S. Abdullah, H. Haris, K. Z. Zarkasi & H. G. Amir, “16S rRNA gene amplicon sequencing data of tailing and nontailing rhizosphere soils of Mimosa pudica from a heavy metal-contaminated ex-Tin mining area”, Microbiology Resource Announcement 9 (2020) e00761-20. https://doi.org/10.1128/MRA.00761-20.

[18] X. Wang, C. Wang, J. Sui, Z. Liu, Q. Li, C. Ji, X. Song, Y. Hu, C. Wang, R. Sa, J. Zhang, J. Du & X. Liu, “Isolation and characterization of phosphofungi, and screening of their plant growth-promoting activities”, AMB Express 8 (2018) 63. https://doi.org/10.1186/s13568-018-0593-4.

[19] A. pande, P. Pandey, S. Mehra, M. Singh & S. Kaushik, “Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize”, Journal of Genetic Engineering and Biotechnology 15 (2017) 379. http://dx.doi.org/10.1016/j.jgeb.2017.06.005.

[20] M. Edi-Premono, “Effect of phosphate –solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere”, Indonesia Journal of Crop Science 11 (1996) 13. https://www.cabidigitallibrary.org/doi/full/10.5555/19970700762.

[21] I. A. El-Ghandour, S. M. Easa, O. A. Abdel Aziz, A. M. Mousa & H. G. Hussein, “Isolation and characterization of phosphate solubilizing fungus in vitro”, Journal of Nuclear Technology and Applied Sciences 6 (2018) 93. https://doi.org/10.21608/jntas.2018.10200.

[22] D. L. Church, “Biochemical tests for the identification of aerobic bacteria”, in Clinical Microbiology Procedures Handbook, A. L. Leber (Ed.), ASM Press, Washington DC, USA, 2016, pp. 3.17.1–3.17.48. https://www.clinmicronow.org/doi/10.1128/9781683670438.CMPH.ch3.17.

[23] B. Roy, T. Das & S. Bhattacharyya, “Overview on old and new biochemical test for bacterial identification, J, surgical case reports and images”, Journal of Surgical Case Reports and Images 6 (2023) 1. https://doi.org/10.31579/2690-1897/163.

[24] D. Roberts & M. Greenwood, Practical food microbiology (3rd ed.), Blackwell Publishing, Massachusetts, USA, 2003, pp. 243–257. https://doi.org/10.1002/9780470757512.ch10.

[25] A. A. Khan, G. Jilani, M. S. Akhtar, S. M. S. Naqvi &M. Rasheed, “Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production”, Journal of Agriculture and Biological Sciences 1 (2009) 48. https://www.uaar.edu.pk/jabs/files/jabs 1 1 6.pdf.

[26] R. Ghosh, S. Barman & R. Mukherjee, “Role of phosphate solubilizing Burkholderia spp. for successful colonization and growth promotion of Lycopodium cernuum L. (Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India”, Microbiology Research 183 (2016) 80. http://dx.doi.org/10.1016/j.micres.2015.11.011.

[27] G. Bhardwaj, R. Shah, B. Joshi & P. Patel, “Klebsiella pneumoniae VRE36 as a PGPR isolated from Saccharum officinarum cultivar co99004”, Journal of Applied Biology and Biotechnology 5 (2017) 47. https://doi.org/10.7324/JABB.2017.50108.

[28] Md. T. Islam, A. Deora, Y. Hashidoko, A. Rahman, T. Ito & S. Tahara, “Isolation and identification of potential phosphate solubilizing bacteria from the rhizoplane of Oryza sativa L. cv. BR29 of Bangladesh”, Naturforsch. 62c (2007) 103. https://doi.org/10.1515/zinc-2007-1-218.

[29] S. Biswas, I. Philip, S. Jayaram & S. Sarojini, “Endophytic bacteria Klebsiella spp. and Bacillus spp. from Alternanthera philoxeroides in Madiwala Lake exhibit additive plant growth-promoting and biocontrol activities”, Journal of Genetic Engineering and Biotechnology 21 (2023) 153. https://doi.org/10.1186/s43141-023-00620-8.

[30] A. Kumar, A. Kumar, S. Devi, S. Patil, C. Payal & S. Negi, “Isolation, screening and characterization of bacteria from rhizospheric soils for different plant growth promotion (PGP) activities: an in vitro study”, Recent Research in Science and Technology 4 (2012) 1. https://updatepublishing.com/journal/index.php/rrst/article/view/851.

[31] D. Paul & S. N. Sinha, “Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India”, Annals of Agrarian Science 15 (2017) 130. http://dx.doi.org/10.1016/j.aasci.2016.10.001.

[32] A. N. Yadav, “Phosphate solubilizing microorganisms for agricultural sustainability”, Journal of Applied Biology and Biotechnology 10 (2022) 1. https://dx.doi.org/10.7324/JABB.2022.103ed.

[33] L. F. Brito, M. G. L´opez, L. Straube, L. M. P. Passaglia & V. F. Wendisch, “Inorganic phosphate solubilization by rhizosphere bacterium Paenibacillus sonchi: gene expression and physiological functions”, Frontiers in Microbiology 11 (2020) 588605. https://doi.org/10.3389/fmicb.2020.588605.

[34] B. Panda, H. Rahman & J. Panda, “Phosphate solubilizing bacteria from the acidic soils of Eastern Himalayan region and their antagonistic effect on fungal pathogens”, Rhizosphere 2 (2016) 62. https://doi.org/10.1016/j.rhisph.2016.08.001.

[35] S. Joshi, S. Gangola, V. Jaggi & M. Sahgal, “Functional characterization and molecular fingerprinting of potential phosphate solubilizing bacterial candidates from shisham rhizosphere”, Scientifc Reports 13 (2023) 7003. https://doi.org/10.1038/s41598-023-33217-9.

[36] H. Rodriguez & R. Fraga, “Phosphate solubilizing bacteria and their role in plant growth promotion”, Biotechnology Advances 17 (1999) 319. https://doi.org/10.1016/S0734-9750(99)00014-2.

[37] B. N. Fitriatin, A. Widyasmara, M. Arifin, R. Devnita, A.Yuniarti & R. Haryanto, “Isolation and screening of phosphate solubilizing bacteria from rhizosphere of tea (Camellia Sinensis L.) on andisols”, International Journal of Sustainable Agricultural Research 4 (2018) 95. https://doi.org/10.18488/journal.70.2017.44.95.100.

[38] M. Liu, X. Liu, B. S. Cheng, X. L. Ma, X. T. Lyu, X. F. Zhao, Y. L. Ju, Z. Min & Y. L. Fang, “Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers”, Spanish Journal of Agricultural Research 14 (2016) e1106. http://dx.doi.org/10.5424/sjar/2016144-9714.

[39] S. Aarab, F. J. Ollero, M. Megias, M. L. Bakkali & A. Arakrak, “Isolation and screening of bacteria from rhizospheric soil of rice fields in Northwestern Morocco for different plant growth promoting (PGP) activities: an in vitro study”, International Journal of Current Microbiology and Applied Sciences 4 (2015) 260. https://www.ijcmas.com.

[40] E. Acevedo, T. Galindo-Castaneda, F. Prada, M. Navia & H. M. Romero, “Phosphate- solubilizing microorganisms associated with the rhizosphere of oil palm (Elaeis guineensis Jacq.) in Colombia”, Applied Soil Ecology 80 (2014) 26. https://doi.org/10.1016/j.apsoil.2014.03.011.

[41] S. Takahashi & M. R. Anwar, “Wheat grain yield, phosphorus uptake and soil phosphorus fraction after 23 years of annual fertilizer application to an Andosol”, Field Crops Research 101 (2007) 160. https://doi.org/10.1016/j.fcr.2006.11.003.

[42] C. K. Kirui, E. M. Njeru & S. Runo, “Diversity and phosphate solubilization efficiency of phosphate solubilizing bacteria isolated from semi-arid agroecosystems of Eastern Kenya”, Microbiology Insights 15 (2022) 1. https://doi.org/10.1177/11786361221088991.

[43] S. Gouda, R, G, Kerry, G. Das, S. Paramithiotis, H-S. Shin & J. K. Patra, “Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture”, Microbiological Research 206 (2018) 131. http://dx.doi.org/10.1016/j.micres.2017.08.016.

[44] A. A. Agboola, T. A. Ogunnusi, O. G. Dayo-Olagbende & O. B. Akpor, “Optimization of phosphate solubilization activity of Enterobacter cloacae and Enterobacter hormaechei from rhizosphere”, The Open Microbiology Journal 17 (2023) 1. https://doi.org/10.2174/18742858-v17-230823-2023-8.

[45] W. F. R´ıos-Ruiz, R. D. Casique-Huamanguli, R. A. Valdez-Nu˜nez, J. C. Rojas-Garc´ıa, A. R. Calixto- Garc´ıa, F. R´ıos-Re´ategui, D. F. Pompa-V´asquez & E. Padilla-Santa-Cruz, “ Rhizospheric bacteria of cover legumes from acidic soils are capable of solubilizing different inorganic phosphates”, Microorganisms 12 (2024) 1101. https://doi.org/10.3390/microorganisms12061101.

[46] T. E. Ejeagba, C. C. Obi & G. Umanu, “Isolation and molecular characterization of phosphate solubilizing bacteria from root nodules of cowpea (Vigna unguiculata) seeds planted at Ota, Ogun State, Nigeria”, Journal of Applied Sciences & Environmental Management 27 (2023) 2525. https://dx.doi.org/10.4314/jasem.v27i11.23.

Published

2025-01-27

How to Cite

Phosphate solubilization by rhizobacteria isolated from the rhizosphere of Mimosa pudica: an investigation into microbial mobilization of phosphorus. (2025). African Scientific Reports, 4(1), 249. https://doi.org/10.46481/asr.2025.4.1.249

Issue

Section

BIOLOGICAL SCIENCES SECTION

How to Cite

Phosphate solubilization by rhizobacteria isolated from the rhizosphere of Mimosa pudica: an investigation into microbial mobilization of phosphorus. (2025). African Scientific Reports, 4(1), 249. https://doi.org/10.46481/asr.2025.4.1.249