Screening of Metal-Ion Intercalated Yttrium Carbide and Nitride MXenes for Energy Storage Applications via Density Functional Theory

Authors

  • E. Omugbe Department of Physics, University of Agriculture and Environmental Sciences, Umuagwo, Imo State, Nigeria
  • O. E. Osafile Department of of physics, Federal University of Petroleum Resources, 330102, Effurun, Delta State, Nigeria.
  • N. O. Nenuwe Department of of physics, Federal University of Petroleum Resources, 330102, Effurun, Delta State, Nigeria.
  • E. A. Enaibe Department of of physics, Federal University of Petroleum Resources, 330102, Effurun, Delta State, Nigeria.

Keywords:

Energy storage materials, Lithium-ion batteries, Magnesium-ion batteries, 2D MXene materials

Abstract

Rechargeable batteries and energy storage devices play a major role in many facets of human endeavour due to their efficiency and portability. In this work, we investigated the suitability of single-layer intercalated Yttrium-based MXenes Y2CT2 (T= Li, Mg, Al) and Y2NLi2 as potential energy storage materials using the first principle calculation within the framework of the density functional theory approach. Upon intercalation, the lattice constants of the MXenes expand due to the size of the intercalating species and the electrostatic repulsion. We obtained the theoretical gravimetric capacities, open circuit voltages and adsorption energies. The obtained open circuit voltages for Y2CT2 (T= Li, Mg) and Y2NLi2 falls within the voltage window of 0 − 1.0V which has been found to eliminate dendrites formation caused by alkaline metals during the discharge-charge cycle. The adsorption energies indicate the stability of the intercalating ion on the MXenes surfaces except for Al cation. The results are consistent with other studies on similar MXene families in the existing literature. The work may aid the understanding of the electrochemical properties of 2D materials and we recommend Y2CLi2, Y2NLi2 , and Y2CMg2 for future investigation as potential materials for rechargeable batteries.

Dimensions

N.M. Caffrey, “Prediction of Optimal Synthesis Conditions for the Formation of Ordered Double-Transition-Metal MXenes (o-MXenes)”, J. Phys. Chem. C 124 (2020) 18797

H. Wang, Z. Jing,, H. Liu, X. Feng, G. Meng, K. Wu, Y. Cheng & B. Xiao, “A high throughput assessment of the adsorption capacity and Li-ion diffusion dynamics in Mo-based ordered double-transition-metal MXenes as anode materials for fast-charging LIBs”, Nanoscale 12 (2020) 24510.

T.B. Martins, R.H. Miwa, A.J. Da Silva & A. Fazzio, “Electronic and transport properties of boron-doped graphene nanoribbons”, Phys. Rev. Lett. 98 (2007) 196803.

M. Kurtoglu, M. Naguib, Y. Gogotsi & M.W. Barsoum, “First principles study of two-dimensional early transition metal carbides”, MRS Communications, 2 (2012) 133.

A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman, A. Sinitskii & Y. Gogotsi, “Elastic properties of 2D Ti3C2T x MXene monolayers and bilayers”, Sci. Adv. 4 (2018) eaat0491.

V.N. Borysiuk, V.N. Mochalin & Y. Gogotsi, “Molecular dynamic study of the mechanical properties of two - dimensional titanium carbides Ti n+1 C n (MXenes)”, Nanotechnology, 26 (2015) 265705.

B.U. Haq, S. Alfaify, T. Alshahrani, R. Ahmed, Q. Mahmood, D.M. Hoat & S. A. Tahir, “Investigation of thermoelectric properties of ZnO monolayers from firstprinciple approach”, Phys. E Low-dimens. Syst. Nanostruct 136 (2021) 114444.

B.U. Haq, S. Alfaify & A. Laref, “Design and characteristic of novel polymorphs of single-layered tin-sulfide for direction dependent thermoelectric applications using first-principles approaches”, Phys. Chem. Chem. Phys. 21 (2019) 4624.

B.U. Haq, S. Alfaify & A. Laref, “Exploring novel flat band polymorphs of singlelayered Germanium Sulfide for high-efficiency thermoelectric application”, J. Phys. Chem. C 123 (2019) 18124.

M. Naguib, J. Halim, J. Lu, M. K. Cook, L. Hultman, Y. Gogotsi & M.W. Barsoum, “New two-dimensional Niobium and vanadium carbides as promising materials for Li-ion batteries”, J. Am. Chem. Soc. 135 (2013) 15966.

H. Tang, Q. Hu, M. Zheng, Y. Chi, X. Qin, H. Pang & Q. Xu, “MXene-2D layer electrode materials for energy storage”, Prog. Natl. Mater. Sci. Mater. Int. 28 (2018) 133.

E. E. Elemike, O. E. Osafile & E. Omugbe “New perspectives 2Ds to 3Ds MXenes and graphene functionalized systems as high performance energy storage materials”, Journal of Energy Storage 42 (2021) 102993.

M. Saraf, T. Zhang, T. Averianov, C.E. Shuck, R.W. Lord, E. Pomeraritseva & Y. Gogotsi, “Vanadium and Niobium Mxenes-Bilayered V2O5 Asymmetric supercapacitors”, Small methods 2201551 (2023), https://doi.org/10.1002/smtd.202201551.

Y. Gogotsi, “Monolithic integrated MXene supercapacitors may power future electronics”, National Science Review 10 (2023) 20

A. Inman, T. Hryhorchuk, L. Bi, R.J. Wang, B. Greenspan, T. Tabb, E.M. Gallo, A. Vahidmohammadi, G. Dion, A. Danielescu & Y. Gogotsi, “Wearable energy storage with Mxen textile supercapacitors for real world use”, J.Mater. Chem. 11 (2023) 3514.

E. Vorobyeva, F. Lissel, M. Salanne, M.R. Lukatskaya, “Bottom up design of configurable oligomer derived conducting metallopolymers for high-power electrochemical energy storage”, ACS nano 15 (2021) 15422.

Y. Xie, Y. Dall Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum, H.L.L. Zhaung & P.R. Kent, “Rediction and characterization of MXene nanosheets. Anodes for non-Li ion batteries”, ACS Nano 8 (2014) 9606.

G. Kresse & J. Furthmüller, “Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set”, Phys. Rev. B: Condens. Mater. Phys. 54 ( 1996) 111693.

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson & M. C. Payne, “First principles methods using CASTEP”, Zeitschrift fuer Kristallographie 220 (2005) 567.

P. Giannozzi, et al., “Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials”, J. Phys. Condens. Matter 21 (2009) 395502.

P. Giannozzi, et al., “Advanced capabilities for materials modelling with Quantum ESPRESSO”, J. Phys. Condens. Matter 29 (2017) 465901.

P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen & L.D. Marks, “WIEN2k: An APW+lo program for calculating the properties of solids” J. Chem. Phys. 152 (2020) 074101.

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva & A.A. Firsov, “Electric field effect in atomically thin carbon films”, Science 306 (2004) 666.

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos & A.A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene”, Nature 438 (2005) 197.

C. Eames & M.S. Islam, “Ion Intercalation into Two-Dimensional Transition-Metal Carbides:Global Screening for New High-Capacity Battery Materials”, J. Am. Chem. Soc. 136 (2014) 16270.

E. Omugbe , O.E. Osafile, O.N. Nenuwe & E.A. Enaibe. “Energy band gaps and novel thermoelectric properties of two-dimensional functionalized Yttrium carbides (MXenes)”, Physica B 639 (2022) 413922.

R. Syamsai, J.R. Rodriguez, V.G. Pol, V. Q. Le, K. M. Batoo, S.F. Adil, S. Pandiaraj, M.R. Muthumareeswaran, E.H. Raslan & A.N. Grace, “Double transition metal MXene (TixTa4-xC3) 2D materials as anodes for Li-ion batteries”, Scientific Reports 11 (2021) 688.

B. Anasori, C. Shi, E.J. Moon, Y. Xie, C.A. Voigt, P. R. C. Kent, D. May, S. J. L. Billinge, M.W. Barsoum & Y. Gogotsi, “Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers”, Nanoscale Horiz. 1 (2016) 227.

K. Hantanasirisakul, B. Anasori, S. Nemsak, J.L. Hart, L. Wu, Y. Yang, R.V. Chopdekar, P. Shafer, A.F. May, E.J. Moon, J. Zhou, Q. Zhang, M. L. Taheri, S.J. May & Y. Gogotsi, “Evidence of a magnetic transition in atomically thin Cr2TiC2Tx MXene”, Nanoscale Horiz. 5 (2020)1557.

R. Meshkian, Q. Tao, M. Dahlqvist, J. Lu, L. Hultman & J. Rosén, “Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene”, Acta Materialia 125 (2017) 476.

W.Sun, Y. Xie & P R. C. Kent, “Double transition metal MXenes with wide band gaps and novel magnetic properties”, Nanoscale 10 (2018) 11962.

L. Li, “Lattice dynamics and electronic structures of Ti3C2O2 and Mo2TiC2O2 (MXenes): The effect of Mo substitution”, Computational Materials Science 124 (2016) 8.

D. Jin, L.R. Johnson, A.S. Raman, X. Ming, Y. Gao, F. Du, Y. Wei, G. Chen, A. Vojvodic, Y. Gogotsi & X. Meng, “Computational Screening of 2D Ordered Double Transition-Metal Carbides (MXenes) as Electrocatalysts for Hydrogen Evolution Reaction”, J. Phys. Chem. C 124 (2020) 10584.

J. He, G. Ding, C. Zhong, S. Li, D. Li & G. Zhang, “Cr2TiC2-based double MXenes: novel 2D bipolar antiferromagnetic semiconductor with gate-controllable spin orientation toward antiferromagnetic spintronics”, Nanoscale 11 (2019) 356.

A. K. Geim & I.V. Grigorieva, “Van der Waals heterostructures”, Nature 499 (2013) 419.

M. Khazaei, M. Arai, T. Sasaki, M. Estili & Y. Sakka, “Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family”, Phy. Chem.. Chem. Phys. 16 (2014) 7841.

M. Khazaei, M. Arai, T. Sasaki, C.Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka & Y. Kawazoe, “Novel electronic and magnetic properties of twodimensional transition metal carbides and nitrides”, Adv. Funct. Mater. 23 (2013) 2185.

A.N. Gandi, H.N. Alshareef & U. Schwingenschlogl, “Thermoelectric performance of the MXenes M 2 CO 2 (M = Ti, Zr, or Hf)”, Chem. Mater. 28 (2016) 1647.

S. Kumar & U. Schwingenschlogl, “Thermoelectric performance of functionalized Sc 2 C MXenes”, Phys. Rev. B 94 (2016) 035405.

Z. Jing, H. Wang, X. Feng, B. Xiao, Y. Ding, K. Wu & Y. Cheng, “Superior thermoelectric performance of ordered double transition metal MXenes: Cr 2 TiC 2 T 2 (T = - OH or - F)”, J. Phys. Chem. Lett. 10 (2019) 5721.

H. Kim, B. Anasori, Y. Gogotsi & H.N. Alshareef, “Thermoelectric properties of two dimensional Molybdenum-based MXenes”, Chem. Mater. 29 (2017) 6472.

S. Sarikurt, D. Carkir, M. Keceli & C. Sevik, “Influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers”, Nanoscale. 10 (2018) 8859.

C.E. Ren, K.B. Hatzell, M. Alhabeb, Z. Ling, K.A. Mahmoud & Y. Gogotsi, “Charge and size ion selective sieving through Ti 3 C 2 T x membrane”, J. Phys. Chem. Lett. 6 (2015) 4026.

Q. Pang, J.X. Guo, Q.R. Zhang, J.Y. Xiang, B.Z. Liu, A.G. Zhou, R.P. Liu & Y.J. Tian, “Unique Lead adsorption behavior of activated hydroxyl group in two-dimensional Titanium Carbide”, J. Am. Chem. Soc. 136 (2014) 4113.

Y. Ying, Y. Liu, X.Y. Wang, Y.Y. Mao & W. Cao, “Two -dimensional Titanium Carbide for efficiently reductive removal of highly toxic Chromium (VI) from water”, ACS Appl. Matter. Interfaces 7 (2015) 1795.

Y. Dong, S.S.K. Mallineni, K. Maleski, H. Behlow, V.N. Mochalin, A.M. Rao, Y. Gogotsi & R. Podila, “Metallic MXenes: a new family of materials for flexible triboelectric nanogenerators”, Nano Energy 44 (2018) 103.

F. Wang, C.H. Yang, C.Y. Duan, D. Xiao, Y. Tang & J.F. Zhu, “An organ-like Titanium Carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor”, J. Electrochem. Soc. 162 (2015) B16.

C.B. Hatter, A. Sarycheva, A. Levitt, B. Anasori, L. Nataraj & Y. Gogotsi, “Electrically Conductive MXene-Coated Glass Fibers for Damage Monitoring in Fiber-Reinforced Composites”, J. Carbon Res. 6 (2020) 1.

P.A. Rasheed, R.P. Pandey, T. Gomez, K.A. Jabbar, K. Prenger, M. Naguib, B. Aissa & K.A. Mahmoud, “Nb-based MXenes for the efficient electrochemical sensing of small biomolecules in the anodic potential”, Electrochem. Commun. 119 (2020) 106811.

S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.Y. Cho, B. Anasori, C.K. Kim, Y. K. Choi, J. Kim, Y. Gogotsi & H.T. Jung, “Metallic Ti3C2T x MXene gas sensors with ultrahigh signal-to-noise ratio”, ACS Nano 12 (2018) 986.

A. Sarycheva, A. Polemi, Y. Liu, K. Dandekar, B. Anasori & Y. Gogotsi, “2D Titanium carbide (Mxene) for wireless communication”, Sci. Adv. 4 (2018) 1.

R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum & H.N. Alshareef, “Effect of post etch annealing gas composition on the structural and electrochemical properties of Ti 2 CT x MXene Electrodes for Supercapacitor Applications”, Chem mater 27 (2015) 5314.

M.R. Lukatskaya, E. Mashtalir, C.E. Ren, Y.D. Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum & Y. Gogotsi, “Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide” Science, 341 (2013) 1502.

M. Ghidiu, M.R. Lukatskaya, M. Q. Zhao, Y. Gogotsi & M.W. Barsoum, “Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance”, Nature. 516 (2014) 78.

J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.Q. Zhoa, E.J. Moon, J. Pitock, J. Nanda, S. J. May & Y. Gogotsi, “Synthesis and characterization of 2D Molybdenum Carbide (MXene)”, Adv. Funct. Mater, 26 (2016) 3118.

J. Zhu, A. Chroneos, J. Eppinger & U. Schwingenschlögl, “S-functionalized MXenes as electrode materials for Li-ion batteries”, Applied material today 5 (2016) 19.

J. Zhou, X. Zha, X. Zhou, F. Chen, G. Gao, S. Wang, C. Shen, T. Chen, C. Zhi, P. Eklund, S. Du, J. Xue, W. Shi, Z. Chai & Q. Huang, “Synthesis and Electrochemical Properties of Two-Dimensional Hafnium Carbide”, ACS Nano 11 (2017) 3841.

M. Naguib, R.R. Unocic, B. L. Armstrong & J. Nanda, “Large-scale delamination of multilayers transition metal carbides and carbonitrides MXenes”, Dalton Trans. 4 (2015) 9353.

B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, & M.W. Barsoum, “Two- Dimensional, Ordered, Double Transition Metals Carbides (MXenes)”, ACS Nano, 9 (2015) 9507.

F. Liu, J. Zhou, S. Wang, B. Wang, C. Shen, L. Wang, Q. Hu & Q. Huang, A. Zhou, “Preparation of high-purity V 2 C MXene and electro-chemical properties as Li-Ion batteries” Journal of the Electrochemical Society, 164 (2017) A709.

H.J. Monkhorst & J.D. Pack, “Special points for Brillouin-zone integrations”, Phys. Rev. B 13 (1976) 5188.

J.P. Perdew, K. Burke & M. Ernzerhof, “Generalized gradient approximation made simple”, Phys. Rev. Lett. 77 (1996) 3865.

M. Methfessel & A.T. Paxton, “High-precision sampling for Brillouin-zone integration in metals”, Phys. Rev. B 40 (1989) 3616.

P.E. Blochl, O. Jepsen & O.K. Andersen, “Improved tetrahedron method for Brillouin-zone integrations”, Phys. Rev. B 49 (1994) 16223.

Y. Wang, M. Zhou, L.C. Xu, W. Zhao, R. Li, Z. Yang, R. Liu & X. Li, Achieving superior high-capacity batteries with the lightest Ti2C MXene anode by first-principles calculations: Overarching role of S-functionate (Ti 2 CS 2 ) and multivalent cations carrier. Journal of Power Sources 451 (2020) 227791.

T. Yu, Z. Zhao, L. Liu, S. Zhang, H. Xu & G. Yang, “TiC Monolayer with High Specific Capacity for Sodium-Ion Batteries”, J. Am. Chem. Soc. 140 (2018) 5962.

Published

2023-04-24

How to Cite

Screening of Metal-Ion Intercalated Yttrium Carbide and Nitride MXenes for Energy Storage Applications via Density Functional Theory. (2023). African Scientific Reports, 2(1), 88. https://doi.org/10.46481/asr.2023.2.1.88

Issue

Section

Original Research

How to Cite

Screening of Metal-Ion Intercalated Yttrium Carbide and Nitride MXenes for Energy Storage Applications via Density Functional Theory. (2023). African Scientific Reports, 2(1), 88. https://doi.org/10.46481/asr.2023.2.1.88