Groundwater recharge modelling using SWAT analysis for groundwater reserve quantification of Ka watershed catchment area part of Sokoto-Rima Basin, North West Nigeria

Authors

  • Ahmad M. Shuaibu Geology Department, Faculty of Science, Federal University Lokoja, Kogi State,
  • Kizito O. Musa Geology Department, Faculty of Science, Federal University Lokoja, Kogi State,
  • Ijioma M. Okiyi Geology Department, Faculty of Science, Federal University Lokoja, Kogi State,

Keywords:

Soil and Water Assessment Tool (SWAT), Groundwater Recharge, Water Budget, Hydrological Response Unit, Ka-River Watershed

Abstract

Recharge plays a major role in water resources management. However, measuring its spatiotemporal dispersion at the catchment region is an extremely difficult undertaking. This study used the Soil and Water Assessment Tool (SWAT) model and the Geography Information System (GIS) technique to estimate the recharge, spatial distribution, and potential recharge zones of groundwater at different scales in the Ka watershed catchment area. With the use of soil, land use, climate, and discharge data, as well as a digital elevation model, the SWAT model was established using data sets that span from (1996 – 2017), calibrated (2002 – 2017), and validated (2002–2017). The seven influencing groundwater recharge parameters that were integrated: rainfall, evapotranspiration, land cover/use, drainage, soil, hydraulic conductivity data, and runoff were utilized in mapping the recharge zones. The calibration and validation results are in good agreement with the field measured data, during the simulation exercise. Water balance analysis revealed groundwater recharge rate that ranges from 196.64 to 339.80 mm/annum with mean value of 269.08 as sole input into groundwater system which accounts for 28% of the input within this basin, while the basin receives mean precipitation of 972.83 mm/annum. The groundwater reserve of Ka watershed is estimated at 21,035,746.20 m3. This available groundwater potential is sufficient for both irrigational use and domestic usage based on the fact that the area is sparsely populated and entirely depend on agricultural produce for survival.

Dimensions

[1] S. Abbas, Y. Xuan & R. Bailey, “Assessing climate change impact on water resources in water demand scenarios using SWAT-MODFLOW-WEAP”, Hydrology 9 (2022) 164. https://doi.org/10.3390/hydrology9100164.

[2] J. Arnold, R. Srinivasan, R. Muttiah & J. Williams, “Large area hydrologic modeling and assessment part 1: model development”, J. Am. Water Resour. Assoc. 34 (1998) 73. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x.

[3] J. Arnold, M. White, P. Allen, P. Gassman & K. Bieger, “Conceptual framework of connectivity for a national agroecosystem model based on transport processes and management practices”, J. Am. Water Resour. Assoc. 57 (2020) 154. https://doi.org/10.1111/1752-1688.12890.

[4] S. Fatichi, E. R. Vivoni, F. I. Ogden, V. Y. Ivanov, B. Mirus, D. Gochis, C. W. Downer, M. Camporese, J. H. Davison, B. Ebel, N. Jones, J. Kim, G. Mascaro, R. Niswonger, P. Restrepo, R. Rigon, C. Shen, M. Sulis & D. Tarboton, “An overview of current applications, challenges, and future trends in distributed process-based models in hydrology”, J. Hydrol. 537 (2016) 45. https://doi.org/10.1016/j.jhydrol.2016.03.026.

[5] S. A. Abbas, R. T. Bailey, J. T. White, J. G. Arnold, M. J. White, N. Cerkasova & J. Gao, “A framework for parameter estimation, sensitivity analysis, and uncertainty analysis for holistic hydrologic modeling using SWAT+”, Hydrol. Earth Syst. Sci. 28 (2024) 21. https://doi.org/10.5194/hess-28-21-2024.

[6] S. Das, “Comparison among influencing factor, frequency ratio, and analytical hierarchy process techniques for groundwater potential zonation in Vaitarna Basin, Maharashtra, India”, Groundwater for Sustainable Development 8 (2019) 617. https://doi.org/10.1016/j.gsd.2019.03.003.

[7] H. Desta & B. Lemma, “SWAT based hydrological assessment and characterization of lake ziway sub-watersheds, Ethiopia”, Journal of Hydrology, Regional Studies 13 (2017) 122. https://doi.org/10.1016/j.ejrh.2017.08.002.

[8] T. Eshtawi, M. Evers & B. Tischbein, “Quantifying the impact of urban area expansion on groundwater recharge and surface runoff”, Hydrological Sciences Journal 61 (2016) 826. https://doi.org/10.1080/02626667.2014.1000916.

[9] F. Githui, B. Selle & T. Thayalakumaran, “Recharge estimation using remotely sensed evapotranspiration in an irrigated catchment in Southeast Australia”, Hydrological Processes 26 (2012) 1379. https://doi.org/10.1002/hyp.8274.

[10] A. A. Hussein, V. Govindu & A. G. M. Nigusse, “Evaluation of groundwater potential using geospatial techniques”, Applied Water Science 7 (2017) 2447. https://doi.org/10.1007/s13201-016-0433-0.

[11] K. Ibrahim-Bathis & S. A. Ahmed, “Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India”, Egyptian Journal of Remote Sensing and Space Science 19 (2016) 223. https://doi.org/10.1016/j.ejrs.2016.06.002.

[12] A. Izady, K. Davary, A. Alizadeh, A. N. Ziaei, S. Akhavan, A. Alipoor, A. Joodavi & M. L. Brusseau, “Groundwater conceptualization and modeling using distributed SWAT- based recharge for the semi-arid agricultural Neishaboor plain, Iran”, Hydrogeology Journal 23 2014) 47. https://doi.org/10.1007/s10040-014-1219-9.

[13] M. K. Jha, A. Chowdhury, V. M. Chowdary & S. Peiffer, “Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints”, Water Resource Manage 21 (2007) 427. https://doi.org/10.1007/s11269-006-9024-4.

[14] G. Jin, Y, Shimizu, S. Onodera, M. Saito & K. Matsumori, “Evaluation of drought impact on groundwater recharge rate using SWAT and Hydrus models on an agricultural island in western Japan”, Proceedings of the International Association of Hydrological Sciences 371 (2015) 143. https://doi.org/10.5194/piahs-371-143-2015.

[15] S. Kebede, Y. Travi, A. Asrat, T. Alemayehu, T. Ayenew & Z. Tessema, “Groundwater origin and flow along selected transects in Ethiopian rift volcanic aquifers”, Hydrogeology Journal 16 (2008) 55. https://doi.org/10.1007/s10040-007-0210-0.

[16] J. Mallick, R. A. Khan, M. Ahmed, S. D. Alqadhi, M. Alsubih, I. Falqi & M. A. Hasan, “Modeling groundwater potential zone in a semi-arid region of Aseer using Fuzzy-AHP and Geoinformation techniques”, Water 11 (2019) 2656. https://doi.org/10.3390/w11122656.

[17] F. Manna, J. A. Cherry, D. B. McWhorter & B. L. Parker, “Groundwater recharge assessment in an upland sandstone aquifer of Southern California”, Journal of Hydrology 541 (2016) 787. https://doi.org/10.1016/j.jhydrol.2016.07.039.

[18] T. McCormack, Y. O’Connell, E. Daly, L.W. Gill, T. Henry & M. Perriquet, “Characterisation of karst hydrogeology in Western Ireland using geophysical and hydraulic modelling techniques”, Journal of Hydrology 10 (2017) 1. https://doi.org/10.1016/j.ejrh.2016.12.083.

[19] A. Mechal, S. Birk, M. Dietzel, A. Leis, G. Winkler, A. Mogessie & S. Kebede, “Groundwater flow dynamics in the complex aquifer system of Gidabo River Basin (Ethiopian Rift): a multi-proxy approach”, Hydrogeology Journal 25 (2017) 519. https://doi.org/10.1007/s10040-016-1489-5.

[20] A. Mechal, S. Birk, G. Winkler, T. Wagner & A. Mogessie, “Characterizing regional groundwater flow in the Ethiopian Rift: a multi-model approach applied to Gidabo River Basin”, Austrian Journal of Earth Sciences Vienna 109 (2016) 68. https://doi.org/10.1007/s10040-016-1489-5.

[21] D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel & T. L. Veith, “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations”, Transactions of the ASABE 50 (2007) 885. http://dx.doi.org/10.13031/2013.23153.

[22] H. C. Nair, D. Padmalal, A. Joseph & P. G. Vinod, “Delineation of groundwater potential zones in river basins using geospatial tools: an example from Southern Western Ghats, Kerala, India”, Journal of Geovisualization and Spatial Analysis 1 (2017) 5. https://doi.org/10.1007/s41651-017-0003-5.

[23] J. Pascual-Ferrer, A. Perez-Foguet, J. Codony, E. Raventos & L. Candela, “Assessment of water resources management in the Ethiopian Central Rift Valley: environmental conservation and poverty reduction”, International Journal of Water Resources Development 30 (2014) 572. https://doi.org/10.1080/07900627.2013.843410.

[24] V. Podvezko, “Application of AHP technique”, Journal of Business Economics and Management 10 (2009) 181. https://doi.org/10.3846/1611-1699.2009.10.181-189.

[25] A. Putthividhya & J. Laonamsai, SWAT and MODFLOW modeling of spatio-temporal runoff and groundwater recharge distribution, Proceedings of World Environmental and Water Resources Congress, Sacramento, CA, USA, 2017, pp. 51 - 65. https://doi.org/10.1007/s12205-020-0168-1.

[26] M. Rashid, M. A. Lone & S. Ahmed, “Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of South India”, Environmental Monitoring and Assessment 184 (2012) 4829. http://dx.doi.org/10.1007/s10661-011-2305-2.

[27] V. T. Nguyen & J. Dietrich, “Modification of the SWAT model to simulate regional groundwater flow using a multicell aquifer”, Hydrol. Process 32 (2018) 939. https://doi.org/10.1016/j.gsd.2024.101275.

[28] M. M. Ntona, G. Busico, M. Mastrocicco & N. Kazakis, “Modeling groundwater and surface water interaction: an overview of current status and future challenges”, Sci. Total Environ. 846 (2022) 157355. https://doi.org/10.1016/j.scitotenv.2022.157355.

[29] D. Sanz, S. Casta˜no, E. Cassiraga, A. Sahuquillo, J. J. Gomez-Alday, S. Peha & A. Calera, “Modeling aquifer-river interactions under the influence of groundwater abstraction in the mancha oriental system (SE Spain)”, Hydrogeol. Journal 19 (2011) 475. http://dx.doi.org/10.1007/s10040-010-0694-x.

[30] R. May & N. S. B. Mazlan, “Numerical simulation of the effect of heavy groundwater abstraction on groundwater-surface water interaction in langat basin, Selangor, Malaysia”, Environ. Earth Sci. 71 (2014) 1239. http://dx.doi.org/10.1007/s12665-013-2527-4.

[31] R. R. Frederiksen & E. Molina-Navarro, “The importance of subsurface drainage on model performance and water balance in an agricultural catchment using SWAT and SWAT-MODFLOW”, Agric. Water Manag. 255 (2021) 107058. https://doi.org/10.1016/j.agwat.2021.107058.

[32] M. A. Sophocleous, J. K. Koelliker, R. S. Govindaraju, T. Birdie, S. R. Ramireddygari & S. P. Perkins, “Integrated numerical modeling for basin-wide water management: the case of the rattlesnake creek basin in South-Central Kansas”, J. Hydrol. 214 (1999) 179. https://doi.org/10.1016/S0022-1694(98)00289-3.

[33] F. Gao, G. Feng, M. Han, P. Dash, J. Jenkins & C. Liu, “Assessment of surface water resources in the big sunflower river watershed using coupled SWAT– MODFLOW Model”, Water 11 (2019) 528. https://doi.org/10.3390/w11030528.

[34] R. T. Bailey, T. C. Wible, M. Arabi, R. M. Records & J. Ditty, “Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW Model”, Hydrol. Process. 30 (2016) 4420. http://dx.doi.org/10.1002/hyp.10933.

[35] Y. Wang & N. Chen, “Recent progress in coupled surface–ground water models and their potential in watershed hydrobiogeochemical studies: a review”, Watershed Ecol. Environ. 3 (2021) 17. https://doi.org/10.1016/j.wsee.2021.04.001.

[36] C. Guevara-Ochoa, A. Medina-Sierra & L. Vives, “Spatio-temporal effect of climate change on water balance and interactions between groundwater and surface water in plains”, Sci. Total Environ. 722 (2020) 137886. https://doi.org/10.1016/j.scitotenv.2020.137886.

[37] J. A. Guzman, D. N. Moriasi, P. H. Gowda, J. L. Steiner, P. J. Starks, J. G. Arnold & R. A. Srinivasan, “Model integration framework for linking SWAT and MODFLOW”, Environ. Model. Softw. 73 (2015) 103. https://doi.org/10.1016/j.envsoft.2015.08.011.

[38] I. M. Chung, N. W. Kim, J. Lee & M. Sophocleous, “Assessing distributed groundwater recharge rate using integrated surface water-groundwater modelling: application to mihocheon watershed, South Korea”, Hydrogeol. J. 18 (2010) 1253. http://dx.doi.org/10.1007/s10040-010-0593-1.

[39] W. Liu, R. T. Bailey, H. E. Andersen, E. Jeppesen, S. Park, H. Thodsen, A. Nielsen, E. Molina-Navarro & D. Trolle, “Assessing the impacts of groundwater abstractions on flow regime and stream biota: combining SWAT-MODFLOW with flow-biota empirical models”, Sci. Total Environ. 706 (2020) 135702. https://doi.org/10.1016/j.scitotenv.2019.135702.

[40] L. Surinaidu, L. Muthuwatta, U. A. Amarasinghe, S. K. Jain, N. C. Ghosh, S. Kumar & S. Singh, “Reviving the ganges water machine: accelerating surface water and groundwater interactions in the Ramganga sub-basin”, J. Hydrol. 540 (2016) 207. https://doi.org/10.1016/j.jhydrol.2016.06.025.

[41] E. Mosase, L. Ahiablame, S. Park & R. Bailey, “Modelling potential groundwater recharge in the limpopo river basin with SWAT-MODFLOW”, Groundwater Sustain. Dev. 9 (2019) 100260. http://dx.doi.org/10.1016/j.gsd.2019.100260.

[42] S. K. Jain, S. K. Jain, N. Jain & C.Y. Xu, “Hydrologic modeling of a Himalayan mountain basin by using the SWAT mode. hydrology”, Earth Syst. Sci. Discuss. 2017 (2017) 100. https://doi.org/10.5194/hess-2017-100.

[43] G. Srinivas & M. N. Gopal, “Hydrological modeling of Musi river basin, India and sensitive parameterization of streamflow using SWAT CUP”, Journal of Hydrogeology & Hydrologic Engineering 6 (2017) 1. https://doi.org/10.4172/2325-9647.1000153.

[44] M. Sophocleous & S. P. Perkins, “Methodology and application of combined watershed and ground-water models in Kansas”, J. Hydrol. 236 (2000) 185. https://doi.org/10.1016/S0022-1694(00)00293-6.

[45] D. Chunn, M. Faramarzi, B. Smerdon & D. Alessi, “Application of an integrated SWAT–MODFLOWmodel to evaluate potential impacts of climate change and water withdrawals on groundwater–surface water interactions in West-Central Alberta”, Water 11 (2019) 110. https://doi.org/10.3390/w11010110.

[46] V. Pisinaras, “Assessment of future climate change impacts in a mediterranean aquifer”, Glob. NEST J. 18 (2016) 119. https://doi.org/10.30955/gnj.001496.

[47] M. Zambrano-Bigiarini & R. Rojas, A model-independent particle swarm optimization software for model calibration”, Environ. Model. Softw. 43 (2013) 5. https://doi.org/10.1016/j.envsoft.2013.01.004.

[48] L. Yuan, T. Sinshaw & K. J. Forshay, “Review of watershed-scale water quality and nonpoint source pollution models”, Geosciences 10 (2020) 25. https://doi.org/10.3390/geosciences10010025.

[49] A. M. Shuaibu, “Bathymetric survey and volumetric analysis of Bakolori dam reservoir North West Nigeria”, African Scientific Reports 3 (2024) 154. https://doi.org/10.46481/asr.2024.3.2.154.

[50] H. H. Ware, T. D. Mengistu, B. A. Yifru, S. W. Chang & I. M. Chung, “Assessment of spatiotemporal groundwater recharge distribution using Swat-Modflow model and transient water table fluctuation method”, Water 15 (2023) 2112. https://doi.org/10.3390/w15112112.

[51] C. Simsek, A. C. Demirkesen, A. Baba, A. Kumanlıoglu, S. Durukan, N. Aksoy, Z. Demirkıran, A. Has¨ozbek, A. Murathan & G. Tayfur, “Estimation groundwater total recharge and discharge using GIS-Integrated water level fluctuation method: a case study from the Alaˇzsehir alluvial aquiferWestern Anatolia, Turkey”, Arab J. Geosci. 13 (2020) 143. https://doi.org/10.1007/s12517-020-5062-0.

[52] H. Delottier, A. Pryet, J. M. Lemieux & A. Dupuy, “Estimating groundwater recharge uncertainty from joint application of an aquifer test and the water-table fluctuation method”, Hydrogeol. J. 26 (2018) 2495. https://doi.org/10.1007/s10040-018-1790-6.

[53] A. M. Shuaibu & K. A. Murana, “Groundwater flow model part of Sokoto-Rima hydrological basin, Northwestern Nigeria”, Global Journal of Geological Sciences 21 (2023) 251. https://dx.doi.org/10.4314/gjgs.v21i2.8.

[54] E. Park, “Delineation of recharge rate from a hybrid water table fluctuation method”, Water Resource 48 (2012) 109. https://doi.org/10.1029/2011WR011696.

[55] A. Gumuła-Kawecka, B. Jaworska-Szulc, A. Szymkiewicz, W. Gorczewska-Langner, M. Pruszkowska-Caceres, R. AnguloJaramillo & J. Simunek, “Estimation of groundwater recharge in a shallow sandy aquifer using unsaturated zone modeling and water table fluctuation method”, J. Hydrol. 605 (2022) 127283. https://doi.org/10.1016/j.jhydrol.2021.127283.

[56] B. A. Yifru, I. M. Chung, M. G. Kim & S. W. Chang, “Assessment of groundwater recharge in agro-urban watersheds using integrated SWAT-MODFLOW Model”, Sustainability 12 (2020) 6593. https://doi.org/10.1016/j.ejrh.2021.100926.

[57] C. H. Lee, H. F. Yeh & J. F. Chen, “Estimation of groundwater recharge using the soil moisture budget method and the base-flow model”, Environ. Geol. 54 (2008) 1787. https://doi.org/10.1007/s00254-007-0956-7.

[58] B. R. Scanlon, R. W. Healy & P. G Cook, “Choosing appropriate techniques for quantifying groundwater recharge”, Hydrogeol. J. 10 (2002) 18. https://doi.org/10.1007/s10040-001-0176-2.

[59] R. W. Healy & P. G. Cook, “Using groundwater levels to estimate recharge”, Hydrogeology Journal 10 (2002) 91. https://doi.org/10.1007/s10040-001-0178-0.

[60] R. Chand, S. Chandra, V. A. Rao, V. S. Singh & S. C. Jain, “Estimation of natural recharge and its dependency on sub-surface geoelectric parameters”, J. Hydrol. 299 (2004) 67. https://doi.org/10.1016/j.jhydrol.2004.04.001.

[61] R. Rangarajan, D. Muralidharan, S. D. Deshmukh, G. K. Hodlur & T. G. Rao, “Demarcation of recharge area of stressed confined aquifers of neyveli groundwater basin, India, through tritium tracer studies”, Environ. Geol. 48 (2005) 37. https://doi.org/10.1007/s00254-005-1254-x.

[62] A. Shahul Hameed, T. R. Resmi, S. Suraj, C.U. Warrier, M. Sudheesh & R. D. Deshpande, “Isotopic characterization and mass balance reveals groundwater recharge pattern in chaliyar river basin, Kerala, India”, J. Hydrol. Reg. Stud. 4 (2015) 48. https://doi.org/10.1016/j.ejrh.2015.01.003.

[63] M. J. M. Cheema, W. W. Immerzeel & W. G. M. Bastiaanssen, “Spatial quantification of groundwater abstraction in the irrigated Indus Basin”, Groundwater 52 (2014) 25. https://doi.org/10.1111/gwat.12027.

[64] A. M. Shuaibu, “Structural analysis, petrographic study and geochemical assessment of Pan-African granitoid, Gusau sheet 54se Northwest Nigeria”, Malaysian Journal of Geosciences 7 (2023) 50. http://doi.org/10.26480/mjg.01.2023.50.63.

[65] M. Taie Semiromi & M. Koch, “Analysis of spatio-temporal variability of surface–groundwater interactions in the Gharehsoo River Basin, Iran, using a coupled SWAT-MODFLOW Model”, Environ. Earth Sci. 78 (2019) 201. https://doi.org/10.1007/s12665-019-8206-3.

[66] S. Dowlatabadi & S. M. Ali Zomorodian, “Conjunctive simulation of surface water and groundwater using SWAT and MODFLOW in Firoozabad Watershed”, KSCE J. Civ. Eng. 20 (2015) 485. https://doi.org/10.1007/s12205-015-0354-8.

[67] B. Bhatta, S. Shrestha, P. Shrestha & R. Talchabhadel, “Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin”, Catena 181 (2019) 104082. https://doi.org/10.1016/j.catena.2019.104082.

[68] K. Bieger, G. Hormann & N. Fohrer, “Detailed spatial analysis of SWAT-simulated surface runoff and sediment yield in a mountainous watershed in China”, Hydrolog. Sci. J., 60 (2015) 784. https://doi.org/10.1080/02626667.2014.965172.

[69] K. Bieger, J. G. Arnold, H. Rathjens, M. J. White, D. D. Bosch, P. M. Allen, M. Volk & R. Srinivasan, “Introduction to SWAT+, a completely restructured version of the soil and water assessment tool”, J. Am. Water Resource Assoc. 53 (2017) 115. https://doi.org/10.1111/1752-1688.12482.

[70] P. Brunner, R. Therrien, P. Renard, C. Simmons & H. Franssen, “Advances in understanding river groundwater interactions”, Rev. Geophys. 55 (2017) 818. https://doi.org/10.1002/2017RG000556.

[71] A. M. Shuaibu & K. A. Murana, “SWAT hydrological model of Zamfara watershed of Sokoto-Rima River catchment, North West Nigeria”, Nigerian Journal of Technology 43 (2024) 411. https://www.ajol.info/index.php/njt/article/view/288061.

Published

2025-03-12

How to Cite

Groundwater recharge modelling using SWAT analysis for groundwater reserve quantification of Ka watershed catchment area part of Sokoto-Rima Basin, North West Nigeria. (2025). African Scientific Reports, 4(1), 255. https://doi.org/10.46481/asr.2025.4.1.255

Issue

Section

GEOSCIENCES SECTION

How to Cite

Groundwater recharge modelling using SWAT analysis for groundwater reserve quantification of Ka watershed catchment area part of Sokoto-Rima Basin, North West Nigeria. (2025). African Scientific Reports, 4(1), 255. https://doi.org/10.46481/asr.2025.4.1.255