Detoxification of Ochratoxin A in Rice and Maize using ethanolic leaf extracts of  Moringa oleifera and Vernonia amygdalina

Authors

  • Oluwagbenga Anifowose
    Department of Chemistry, Faculty of Natural and Applied Sciences, Nasarawa state University, Keffi, Nigeria
  • Bitrus W. Tukura
    Department of Chemistry, Faculty of Natural and Applied Sciences, Nasarawa state University, Keffi, Nigeria
  • Obaje D. Opaluwa
    Department of Chemistry, Faculty of Natural and Applied Sciences, Nasarawa state University, Keffi, Nigeria

Keywords:

Mycotoxins, Ochratoxin A, Detoxification, Phytochemicals

Abstract

The non-availability of research data in North-central Nigeria coupled with the toxic and prevalent nature of ochratoxin A makes it necessary to quantity and identify possible remediative techniques that are effective, less toxic, locally available, cost friendly and easy to deploy. This research was aimed at evaluating the potency of phytochemical remediation on ochratoxin A (OTA) in stored rice and maize using ethanolic leaf extracts of Moringa oleifera and Vernonia amygdalina. High Performance Liquid Chromatography coupled with Ultraviolet/Visible detector (HPLC-UV/Vis spectroscopy) was employed in the determination of the detoxification levels of the OTA in the samples. Phytochemical constituents in the plant extracts were quantified using standard methods. Phytochemical concentrations ranged from 27.83 ± 1.53 – 184.73 ± 0.06 mg/g and 23.00 ± 1.00 – 171.67 ± 3.06 mg/g in the leaf extracts of Moringa oleifera and Vernonia amygdalina respectively. The levels of phytochemicals in Moringa oleifera extract were statistically (p ≤ 0.05) higher than in Vernonia amygdalina extract. OTA was present in all the samples with residual concentrations of 32.93 ± 2.02 and 39.23 ± 5.68 µg/kg in the stored rice and maize samples respectively. Detoxification using 1 – 5 mg/cm3 of Vernonia amygdalina leaf extract ranged from 34.80 (21.47 ± 1.76 µg/kg) to 56.67 % (14.27 ± 1.09 µg/kg) in rice and 38.87 (23.98 ± 0.95 µg/kg) to 58.45 % (16.30 ± 3.18 µg/kg) in maize while, detoxification using 1 – 5 mg/cm3 of Moringa oleifera leaf extract were ranged from 57.18 (14.10 ± 0.85 µg/kg) to 72.12 % (9.18 ± 0.30 µg/kg) in rice and 53.28 (18.33 ± 0.58 µg/kg) to 70.89 % (11.42 ± 1.52 µg/kg) in maize respectively. Detoxification efficiency of ethanolic leaf extracts of Vernonia amygdalina and Moringa oleifera on OTA increased with increasing concentrations of the extracts. Phytochemical detoxification of OTA in the stored rice and maize samples were observed to be efficient and promising with a detoxification order Moringa oleifera > Vernonia amygdalina.

Dimensions

[1] A. El Khoury & A. Atoui, “Ochratoxin A: General overview and actual molecular status”, Toxins (Basel) 2 (2010) 461. https://doi.org/10.3390/toxins2040461. DOI: https://doi.org/10.3390/toxins2040461

[2] R. Bhat, R. V. Rai & A. A. Karim, “Mycotoxins in food and feed: Present status and future concerns”, Comprehensive Reviews in Food Science and Food Safety 9 (2010) 57. https://doi.org/10.1111/j.1541-4337.2009.00094.x. DOI: https://doi.org/10.1111/j.1541-4337.2009.00094.x

[3] World Health Organisation, “Mycotoxins: Key facts”, 2018. [Online]. https://www.who.int/news-room/fact-sheets/detail/mycotoxins.

[4] E. Janik, M. Niemcewicz, M. Ceremuga, M. Stela, J. Saluk-Bijak, A. Siadkowski & M. Bijak, “Molecular aspects of mycotoxins - a serious problem for human health”, International Journal of Molecular Sciences 21 (2020) 8187. https://doi.org/10.3390/ijms21218187. DOI: https://doi.org/10.3390/ijms21218187

[5] World Health Organisation, “Mycotoxins: Key facts”, 2020. [Online]. https://www.who.int/news-room/fact-sheets/detail/mycotoxins.

[6] B. Kabak, “The fate of mycotoxins during thermal food processing”, Journal of the Science of Food and Agriculture 89 (2009) 549. https://doi.org/10.1002/jsfa.3491. DOI: https://doi.org/10.1002/jsfa.3491

[7] M. A. Haque, Y. Wang, Z. Shen, X. Li, M. K. Saleemi & C. He, “Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review”, Microbial Pathogenesis 142 (2020) 104095. https://doi.org/10.1016/j.micpath.2020.104095. DOI: https://doi.org/10.1016/j.micpath.2020.104095

[8] T. Koszegi & M. Poor, “Ochratoxin A: Molecular interactions, mechanisms of toxicity and prevention at the molecular level”, Toxins 8 (2016) 111. https://doi.org/10.3390/toxins8040111. DOI: https://doi.org/10.3390/toxins8040111

[9] A. Alshannaq & J. H. Yu, “Occurrence, toxicity, and analysis of major mycotoxins in food”, International Journal of Environmental Research and Public Health 14 (2017) 632. https://doi.org/10.3390/ijerph14060632. DOI: https://doi.org/10.3390/ijerph14060632

[10] K. Toregeani-Mendes, C. Arroteia, C. Kemmelmeier, V. Dalpasquale, E. Bando, A. Alves, O. Marques, P. Nishiyama, S. A. G. Mossini & M. Machinsk, Jr., “Application of hazard analysis critical control points system for the control of aflatoxins in the Brazilian groundnut-based food industry”, International Journal of Food Science & Technology 46 (2011) 2611. http://doi.org/10.1111/j.1365-2621.2011.02791.x. DOI: https://doi.org/10.1111/j.1365-2621.2011.02791.x

[11] A. A. Ismaiel & J. Papenbrock, “Mycotoxins: producing fungi and mechanisms of phytotoxicity”, Agriculture 5 (2015) 492. https://doi.org/10.3390/agriculture5030492. DOI: https://doi.org/10.3390/agriculture5030492

[12] R. A. El-Sayed, A. B. Jebur, W. Kang & F. M. El-Demerdash, “An overview on the major mycotoxins in food products: characteristics, toxicity, and analysis”, Journal of Future Foods 2 (2022) 91. https://doi.org/10.1016/j.jfutfo.2022.03.002. DOI: https://doi.org/10.1016/j.jfutfo.2022.03.002

[13] The Commission of the European Communities, “Commission regulation (EC) No 1881/2006: Setting maximum levels for certain contaminants in foodstuffs”, Official Journal of the European Union 364 (2006) 1. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF.

[14] D. Ringot, A. Chango, Y. Schneider & Y. Larondelle, “Toxicokinetics and toxicodynamics of ochratoxin A, an update”, Chemico-Biological Interactions 159 (2006) 18. https://doi.org/10.1016/j.cbi.2005.10.106. DOI: https://doi.org/10.1016/j.cbi.2005.10.106

[15] A. M. Alqasim, “Ethnomedicinal studies of medicinal plants with antifungal activities in Keffi local government, Nasarawa state, Nigeria”, Asian Journal of Plant Science and Research 3 (2013) 109. https://www.pelagiaresearchlibrary.com.

[16] K. K. Mishra, C. D. Kaur, A. K. Sahu, R. Panik, P. Kashyap, S. P. Mishra & S. Dutta, “Medicinal Plants Having Antifungal Properties”, Intechopen Limited, London, United Kingdom, 2020, pp. 1-14. http://dx.doi.org/10.5772/intechopen.90674. DOI: https://doi.org/10.5772/intechopen.90674

[17] C. D. Monteiro & J. R. A. dos Santos, “Phytochemicals and their antifungal potential against pathogenic yeasts”, In Phytochemicals in Human Health, IntechOpen Limited, London, United Kingdom, 2020, pp. 1-31. http://dx.doi.org/10.5772/intechopen.87302. DOI: https://doi.org/10.5772/intechopen.87302

[18] N. Z. Abd Rani, K. Husain & E. Kumolosasi, “Moringa Genus: A review of phytochemistry and pharmacology”, Frontiers in Pharmacology 99 (2018) 108. https://doi.org/10.3389/fphar.2018.00108. DOI: https://doi.org/10.3389/fphar.2018.00108

[19] I. A. Muraina, A. O. Adaudi, M. Mamman, H. M. Kazeem, J. Picard, L. J. McGaw & J. N. Eloff, “Antimycoplasmal activity of some plant species from northern Nigeria compared to the currently used therapeutic agent”, Pharmaceutical Biology 48 (2010) 1103. https://doi.org/10.3109/13880200903505633. DOI: https://doi.org/10.3109/13880200903505633

[20] R. K. Cimanga, L. Tona, K. Mesia, C. T. Musuamba, T. De Bruyne, S. Apers, N. Hernan, V. S. Miert, L. Pieters, J. Totte & A. J. Vlietink, “In vitro antiplasmodialacivity of extracts and fractions from seven medicinal plants used in the democratic republic of Congo”, Journal of Ethnopharmacology 93 (2004) 27. https://doi.org/10.1016/j.jep.2004.02.022. DOI: https://doi.org/10.1016/j.jep.2004.02.022

[21] P. Pa´ıga, S. Morais, T. M. Oliva-Teles, M. Correia, C. Delerue-Matos, S. Duarte, A. Pena & C. Lino, “Extraction of ochratoxin A in bread samples by the QuEChERS methodology”, Food chemistry 135 (2012) 2522. http://dx.doi.org/10.1016/j.foodchem.2012.06.045. DOI: https://doi.org/10.1016/j.foodchem.2012.06.045

[22] I. C. Kengne, A, G. Fankam, E. K. Yamako & J. Tamokou, “Phytochemical analysis, antifungal, and antioxidant properties of two herbs (Tristemma mauritianum and Crassocephalum bougheyanum) and one tree (Lavigeria macrocarpa) species”, Advances in Pharmacological and Pharmaceutical Sciences 54 (2023) 2565857. https://doi.org/10.1155/2023/2565857 DOI: https://doi.org/10.1155/2023/2565857

[23] K. S. Banu, & L Cathrine, “General techniques involved in phytochemical analysis”, International Journal of Advanced Research in Chemical Science 2 (2015) 25. https://www.arcjournals.org/pdfs/ijarcs/v2-i4/5.pdf.

[24] K. Das, R. K. S. Tiwari & D. K. Shrivastava, “Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends”, Journal of Medicinal Plants Research 4 (2010) 104. https://doi.org/10.5897/JMPR09.030.

[25] AOAC (Association of Official Analytical Chemists), “The official methods of analysis: association of official analytical chemists”, 18th Edition, USA, Washington DC, 2005. https://www.sciepub.com/Portal/AZJournals.

[26] European Standard, “Determination of aflatoxin B1, B2, G1 and G2 in pistachios by high performance liquid chromatography with post-column derivatization and immunoaffinity column clean-up”, Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Italy, 2019, pp. 1-9. https://nucleus.iaea.org.

[27] J. Stroka, E. Anklam, U. Jorissen & J. Gilbert, “Immunoa¨ ffinity column cleanup with liquid chromatography using post-column bromination for determination of aflatoxins in peanut butter, pistachio paste, fig paste, and paprika powder: collaborative study”, Journal of Association of Official Analytical Chemists International 83 (2000) 320. https://www.researchgate.net/publication/12544814.

[28] A. A. Adekanmi, U. T. Adekanmi, A. S. Adekanmi & H. Oyekanmi, “Assessment of proximate composition and phytochemical properties of bitter leaf (Vernonia amygdalina) and water leaf (Talinum triangular)”, United International Journal for Research & Technology 1 (2020) 13. https://www.researchgate.net/publication/347628922.

[29] R. A. Syahputra, A. Sutiani, P. M. Silitonga, R. Zulmai, & A. Kudadiri, “Extraction and phytochemical screening of ethanol extract and simplicia of moringa leaf (Moringa oleifera lam.) from Sidikalang, North Sumatera”, International Journal of Science, Technology & Management 2 (2021) 2072. https://doi.org/10.46729/ijstm.v2i6.381. DOI: https://doi.org/10.46729/ijstm.v2i6.381

Published

2025-08-14

How to Cite

Detoxification of Ochratoxin A in Rice and Maize using ethanolic leaf extracts of  Moringa oleifera and Vernonia amygdalina. (2025). African Scientific Reports, 4(2), 294. https://doi.org/10.46481/asr.2025.4.2.294

Issue

Section

CHEMISTRY SECTION

How to Cite

Detoxification of Ochratoxin A in Rice and Maize using ethanolic leaf extracts of  Moringa oleifera and Vernonia amygdalina. (2025). African Scientific Reports, 4(2), 294. https://doi.org/10.46481/asr.2025.4.2.294

Similar Articles

You may also start an advanced similarity search for this article.