Robust weighted ridge regression based on S – estimator

Authors

  • Taiwo Stephen Fayose Department of Statistics, Federal Polytechnic, Ado – Ekiti, 360101, Nigeria
  • Kayode Ayinde Department of Statistics, Federal University of Technology, Akure, 340106, Nigeria; Department of Mathematics and Statistics, Northwest Missouri State University, Maryville, Missouri, 64468, USA
  • Olatayo Olusegun Alabi Department of Statistics, Federal University of Technology, Akure, 340106, Nigeria
  • Abimbola Hamidu Bello Department of Statistics, Federal University of Technology, Akure, 340106, Nigeria

Keywords:

Outliers, Weighted Ridge, Multicollinearity, S Estimator, Heteroscedasticity

Abstract

Ordinary least squares (OLS) estimator performance is seriously threatened by correlated regressors often called multicollinearity. Multicollinearity is a situation when there is strong relationship between any two exogenous variables. In this case, the ridge estimator offers more reliable estimations when such scenario occurs. Outliers can have significant impact on the estimation of regression parameters leading to biased results. However, both OLS and Ridge estimators are sensitive to outlaying observations (outliers). The outlier – prone dataset in the endogenous variable has been efficiently solved utilizing the Robust M estimator in our recent paper. In recent studies, Robust M estimator has some drawbacks despite its efficient performances with outlier – prone dataset in the dependent (endogenous) variable hence the consideration of the Robust S estimator. The Robust S estimator is less sensitive to outliers in both endogenous and exogenous variables and utilizes standard deviation rather than the median in the case of Robust M estimator to handle outliers in the endogenous variable. The Robust ridge based on the S estimator was well suited to model dataset with multicollinearity and outliers problems in the endogenous variable. Also, it was noted in literature that outliers are one of the causes of heteroscedasticity and non – robust weighted least squares were initially employed to figure out for them. In this study, we introduced proposed Robust S weighted ridge estimator by adding a novel weighting method to address the three problems in a linear regression model. The selected Ridge estimators and Robust S estimator in two weighted versions (True weight (Wo) and suggested new weight (W1)) were combined to respectively develop the Robust S Ridge and Robust S Weighted Ridge estimators. Monte – Carlo simulation experiments were conducted on a linear regression model with three and six exogenous variables exhibiting different degrees of Multicollinearity, with heteroscedasticity structure of powers, size of outlier in endogenous variable and error variances and five levels of sample sizes. The Mean Square Error (MSE) was used as a criterion to evaluate the performances of the new and existing estimators. Simulation findings show categorically that the new approach is preferred over previous approach and hereby recommended.

Dimensions

A. F. Lukman & K. Ayinde, “Review and Classifications of the Ridge Parameter Estimation Techniques”, Hacettepe Journal of Mathematics and Statistics 46 (2017) 953. https://doi.org/10.15672/hjms.201815671

A. T. Owolabi, K. Ayinde, J. I. Idowu, O. J. Oladapo & A. F. Lukman, “New Two – Parameter Estimator in the Linear Regression Model with Correlated Regressors”, J. Stat. Appl. Pro. 11 (2022) 499. https://doi.org/10.18576/jsap/110211

I. Dawoud, A. F. Lukman & A. Haadi, “A new biased regression estimator: Theory, simulation and application”, Scientific African 15 (2022) e01100. https://doi.org/10.1016/j.sciaf.2022.e01100

S. Chatterjee & A. S. Hadi, Regression Analysis by Example, 4 th edition, John Wiley & Sons, Hoboken, NJ, USA, 2006. https://doi.org/10.1002/0470055464

G. A. Shewa & F. I. Ugwuowo, “Kibria – Lukman type Estimator for Gamma Regression Model”, Concurrency Computat Pract Exper. 10 (2022) e7741. https://doi.org/10.1002/cpe.7441

G. A. Shewa & F. I. Ugwuowo, “Combating the Multicollinearity in Bell Regression Model: Simulation and Application”, Journal of the Nigerian Society of Physical Sciences 4 (2022) 713. https://doi.org/10.46481/jnsps.2022.713

N. D. Gujarati, C. D. Porter & S. Gunasekar, Basic Econometrics, (5 th Edition), Tata McGraw – Hill, New Delhi, 2012.

J. P. Buonaccorsi, “A Modified Estimating Equation Approach to Correcting for Measurement Error in Regression”, Biometrika 83 (1996) 433. https://doi.org/.jstor.org/stable/2337612

S. Chatterjee, A. S. Hadi & B. Price, Regression Analysis by Example, 3 rd Edition, A Wiley – Interscience Publication, John Wiley and Sons, 2000. https://doi.org/10.1008/1118095

K. Liu, “A New Class of Biased Estimate in Linear Regression” Communications in Statistics – Theory and Methods, 22 (1993) 393. http://dx.doi.org/10.1080/03610929308831027.

A. E. Hoerl, & R. W. Kennard, “Ridge Regression: Biased Estimation for Non-Orthogonal Problems”, Technometrics 12 (1970) 55. https://doi.org/10.2307/

S. Wold, M. Sjostrom, & L. Eriksson, “PLS – Regression: A Basic Tool for Chemometrics”, Chemometrics and Intelligent Laboratory Systems 58(2001) 109. https://doi.org/10.1016/S0169-7439(01)00155-1

W. F. Massy, “Principal Component Regression in Exploratory Statistical Research”, Journal of the American Statistical Association 60 (1965) 234. https://doi.org/10.1080/01621459.1965.10480787

K. Liu, “Using Liu – type estimator to combat Collinearity”, Commun Stat Theor Meth. 32 (2003) 1009. https://doi.org/10.1081/STA-120019959

A. F. Lukman, K. Ayinde, S. Binuomote & A. C. Onate, “Modified Ridge – Type Estimator to combat Multicollinearity: Application to Chemical Data”, Journal of Chemometrics 10 (2019) e3125. https://doi.org/10.1002/cem.3125

A. F. Lukman, G. B. M. Kibria, K. Ayinde & S. L. Jegede, “Modified One – Parameter Liu Estimator for the Linear Regression Model”, Modelling and Simulation in Engineering 10 (2020) 9574304. https://doi.org/10.1155/2020/9574304

G. B. M. Kibria & A. F. Lukman, “A New Ridge – Type Estimator for the Linear Regression Model: Simulations and Applications”, Scientifica 10 (2020) 9758378. https://doi.org/10.1155/2020/9758378

F. I. Ugwuowo, E. H. Oranye & K. C. Arum, “On the Jackknife Kibria – Lukman Estimator for the Linear Regression Model”, Communications in Statistics –Simulation and Computation. 10 (2021) https://doi.org/10.1080/03610918.2021.2007401

S. Chatterjee & A. S. Hadi, “Influential Observations, High Leverage Points, and Outliers in Linear Regression”, Statistical Science 1 (1986) 379. https://doi.org.jstor.org/stable/2245477

D. C. Montgomery, E. A. Peck & G. G. Vining, Introduction to Linear Regression Analysis, 3 rd edition, John Wiley and Sons, New York, 2006. https://doi.org/10.1080//20026/9781119578741

N. H. Jadhav & D. N. Kashid, “A Jackknifed Ridge M – Estimator for Regression Model with Multicollinearity and Outliers”, Journal of Statistical Theory and Practice 54 (2011) 659. https://doi.org/10.1080/15598608.2011.10483737

K. C. Arum & F. I. Ugwuowo, “Combining Principal Component and Robust Ridge Estimators in Linear Regression Model with Multicollinearity and Outlier”, Concurrency Computat Pract Exper. 11 (2022) e6803. https://doi.org/10.1002/cpe.6803

P. J. Huber, “Robust Regression: Asymptotics, Conjectures and Monte Carlo, Annals of Statistics 1 (1973) 799. https://dx.doi.org/10.1214/aos/1176342503

V. Yohai, “High Breakdown Point and High Efficiency Robust Estimates for Regression”, The Annals of Statistics 15 (1987) 642. https://doi.org/10.1214/aos/1176350366

P. J. Rousseeuw & A. M. Leroy, Robust Regression and Outlier Detection, Wiley – Interscience, New York, 1987. https://doi.org/10.1002/0471725382

P. J. Rousseeuw, “Least Median of Squares Regression”, Journal of the American Statistical Association 79 (1984) 871. https://doi.org/10.2307/2288718

G. Bassett & R. Koenker, “Asymptotic Theory of Least Absolute Error Regression”, J. Amer. Statist. Assoc. 73 (1978) 618. https://doi.org/10.2307/2288718

P. J. Rousseeuw, M. Hubert & A. Stefan, “High Breakdown Multivariate Methods”, Statistical Science 23 (1984) 92. https://www.jstor.org/stable/27645882

N. H. Jadhav & D. N. Kashid, “A Jackknifed Ridge M-Estimator for Regression Model with Multicollinearity and Outliers”, Journal of Statistical Theory and Practice 5 (2011) 659. https://doi.org/10.1080/15598608.2011.10483737

H. Ertas, S. Kaciranlar & H. Guler, “Robust Liu – type Estimator for Regression based on M – estimator”, Communications in Statistics - Simulation and Computation 46 (2015) 1. https://doi.org/10.1080/03610918.2015.1045077

H. Ertas, “A Modified Ridge M – Estimator for Linear Regression Model with Multicollinearity and Outliers”, Communications in Statistics - Simulation and Computation 47 (2018) 1240. https://doi.org/10.1080/03610918.2017.1310231

A. F. Lukman, K. Ayinde, G. B. M. Kibria & S. L. Jegede, “Two – Parameter Modified Ridge – Type M – Estimator for Linear Regression Model”, The Scientific World Journal 10 (2020) 3192852 https://doi.org/10.1155/2020/3192852

M. J. Silvapulle, “Robust Ridge Regression based on an M – Estimator”, Australian Journal of Statistics 33 (1991) 319. https://doi.org/10.1111/j.1467-842X.1991.tb00438

I. Dawoud & M. Abonazel, “Robust Dawoud – Kibria Estimator for handling Multicollinearity and Outliers in the Linear Regression Model. Journal of Statistical Computation and Simulation 10 (2021) 3678. https://doi.org/10.1080/00949655.2021.1945063

D. N. Gujarati, Basic Econometrics, McGraw Hill, New York, 2003. https://doi.org.10/1001/0070597936

T. S. Fayose & K. Ayinde, “Different Forms Biasing Parameter for Generalized Ridge Regression Estimator”, International Journal of Computer Applications 181 (2019) 21. https://doi.org.10.5120/ijca2019918339

S. Larson, “The Shrinkage of the Coefficient of Multiple Correlation”, Journal of Educational Psychology 22 (1931) 45. https://doi.org.10.1037/H0072400

F. Mosteller & J. W. Turkey, Data Analysis including Statistics. In Handbook of Social Psychology, Addison – Wesley, Reading, MA, 1968. https://doi.org.10.1009/1968.00682015

N. A. Alao, K. Ayinde & G. S. Solomon, “A Comparative Study on Sensitivity of Multivariate Tests of Normality to Outliers”, A. SMSc J. 12 (2019) 65. https://doi.org.10.1019/2019.002020019

Published

2023-12-07

How to Cite

Robust weighted ridge regression based on S – estimator. (2023). African Scientific Reports, 2(3), 126. https://doi.org/10.46481/asr.2023.2.3.126

Issue

Section

Review Article

How to Cite

Robust weighted ridge regression based on S – estimator. (2023). African Scientific Reports, 2(3), 126. https://doi.org/10.46481/asr.2023.2.3.126