Gas-phase Photocatalytic Oxidation of 1-Hexene Using Heterogeneous Semiconductor Materials


  • E. A. Kamba Department of Chemical Sciences, Federal University, Wukari, Taraba State, Nigeria
  • E. A. Yerima Department of Chemical Sciences, Federal University, Wukari, Taraba State, Nigeria


Alkene, Photo-catalysis, Flow reactor, Titanium dioxide, Glass beads


Photo-catalytic reactions have been carried out and proved to be conducted under mild conditions in contrast to several conventional industrial chemical processes, which involve the use of high amounts of temperature and pressure. In this work, an investigation of the photo-catalytic oxidation of 1-hexene was carried out using UVA-activated TiO2, and coupled TiO2/WO3 to drive organic reactions. Different mol % of WO3 ranging from 1-7mol% were used to monitor effect of coupling amount. The chosen photocatalyst was immobilized on glass beads using an innovative in-house procedure. The immobilized catalyst was then used in a vapour-phase flow reactor designed for alkene photo-oxidation studies. It was possible to establish oxidation rates of 0.14+-0.02 mmol/h for 1-hexene with TiO2/WO3 (1mol %). 1,2-epoxyhexane was successfully synthesized from 1-hexene achieving 15.9% conversion and 41% and 54% selectivity for the 1-hexene, 1,2-epoxyhexane and CO2 respectively when H2O/O2 was used as oxidant. Selectivity of 96% and 97% for CO2 were achieved with N2 and O2 respectively. No epoxide was formed with either N2 or O2 alone.


A. H¨anel, P. More´n, A. Zaleska & J. Hupka, “Photocatalytic Activity of TiO2 Immobilized on Glass Beads”, Physicochemical Problems of Mineral Processing 45 (2010) 49.

N. Hoffmann, “Photochemical Reactions as Key Steps in Organic Synthesis”, Chem. Rev. 108 (2008) 1052.

V. Chauke & T. Nyokong, “Photocatalytic oxidation of 1-hexene using GaPc and InPc octasubstituted derivatives,” Journal of Molecular Catalysis A: Chemical 289 (2008) 9. https://10.1016/j.molcata.2008.04.003

H. Li, B. Xu, B. Deng, X. Yan & Y. Zheng, “Epoxidation of 1-hexene with hydrogen peroxide over nitrogen incorporated TS-1 zeolite”, Cat. Comm. 46 (2014) 224.

S. M. Gupta & M. Tripathi, “A review of TiO2 nanoparticles”, Chinese Sci. Bull. 56 (2011) 1639.

S. W. Verbruggen, S. Deng, M. Kurttepeli, D. J. Cott, P. M. Vereecken, S. Bals, J. A. Martens, C. Detavernier & S. Lenaerts, “Photocatalytic acetaldehyde oxidation in air using spacious TiO2 films prepared by atomic layer deposition on supported carbonaceous sacrificial templates”, Appl. Catal. B Environ. 160 (2014) 204.

S. Kwon, N. M. Schweitzer, S. Park, P. C. Stair & R. Q. Snurr, “A kinetic study of vapor-phase cyclohexene epoxidation by H2O2 over mesoporous TS-1”, J. Catal. 326 (2015) 107.

G. E. Imoberdorf, H. A. Irazoqui, A. E. Cassano & O. M. Alfano, “Photocatalytic Degradation of Tetrachloroethylene in Gas Phase on TiO2 Films: A Kinetic Study”, Industrial & Engineering Chemistry Research 44 (2005) 6075.

H. Shima, T. Tatsumi & J. N. Kondo, “Direct FT-IR observation of oxidation of 1-hexene and cyclohexene with H2O2 over TS-1”, Microporous and Mesoporous Materials 135 (2010) 13.

R. M. Silverstein & F. X. Webster, Spectroscopic identification of organic compounds, sixth edition, Wiley, New York (1998) 84.

V. Augugliaro, S. Coluccia, V. Loddo, L. Marchese, G. Martra, L. Palmisano & M. Schiavello, “Photcatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspect and FT-IR investigation”, Appl. Catal. B Environ. 20 (1999) 15. 3373(98)00088-5

W. Lin & H. Frei, “Photochemical and FT-IR Probing of the Active Site of Hydrogen Peroxide in Ti Silicalite Sieve”, J. Am. Chem. Soc. 124 (2002) 9292.

D. M. P. Ferrandez, M. H. J. M. De Croon, J. C. Schouten & T. A. Nijhuis, “Epoxidation of propylene in a micro reactor using hydrogen peroxide produced in situ in a plasma reactor”, Proceedings of the 15th International Conference on Catalysis, Munich, Germany (2012) 1.

G. Ren, Y. Gao, J. Yin & H. Liu, “Synthesis of High-Activity TiO2/WO3 Photocatalyst via Environmentally Friendly and Microwave Assisted Hydrothermal Process”, J. Chem. Soc. Pak. 33 (2011) 1.

L. Baia, et al. “Preparation of TiO2/WO3 composite photocatalysts by the adjustment of the semiconductors’ surface charge”, Mat. Sci. in Semiconductor Processing 42 (2015) 66.

M. Guidotti, C. Pirovano, N. Ravasio, B. L´azaro, J. M. Fraile, J. A. Mayoral, B. Coq & A. Galarneau, “The use of H2O2 over titanium grafted mesoporous silica catalysts: a step further towards sustainable epoxidation”, Green Chem. 11 (2009) 1421.

M. Ojeda & E. Iglesia, “Catalytic epoxidation of propene with H2O-O2 reactants on Au/TiO2”, Chem. Comm. 3 (2009) 352.

W. Fan, P. Wu & T. Tatsumi, “Unique solvent e ect of microporous crystalline titanosilicates in the oxidation of 1 hexene and cyclohexene”, J. Catal. 256 (2008) 62.

R. Portela, S. Sua´rez, S. B. Rasmussen, N. Arconada, Y. Castro, A. Dura´n, P. A´ vila, J. M. Coronado & B. Sa´nchez, “Photo catalytic based strategies, H2S elimination”, Catalysis Today 151 (2010) 2.

C. E. Ramachandran, H. Du, Y. J. Kim, M. C. Kung, R. Q. Snurr & L. J. Broadbelt, “Solvent e ects in the epoxidation reaction of 1-hexene with titanium silicalite-1 catalyst”, J. Catal. 253 (2008) 148.

W. Lin & H. Frei, “Photochemical and FT-IR Probing of the Active Site of Hydrogen Peroxide in Ti Silicalite Sieve”, J. Am. Chem. Soc. 124 (2002) 9292.

D. H. Wells, A. M. Joshi, W. N. Delgass & K. T. Thomson, “A quantum chemical study of comparison of various propylene epoxidation mechanisms using H2O2 and TS-1 catalyst”, J. Phys. Chem. 110 (2006) 14627.



How to Cite

Kamba, E. A. ., & Yerima, E. A. . (2023). Gas-phase Photocatalytic Oxidation of 1-Hexene Using Heterogeneous Semiconductor Materials. African Scientific Reports, 2(1), 64.



Original Research