High Performance Dye Sensitized Solar Cells by Plasmonic Enhancement of Silver Nanoparticles in ZnO Photoelectrode with Betanin Pigment

Authors

  • Eli Danladi Department of Physics, Federal University of Health Sciences, Otukpo, Benue State, Nigeria
  • Muhammad Y. Onimisi Department of Physics, Faculty of Science, Nigerian Defence Academy, Kaduna, Kaduna State, Nigeria
  • Reuben M. Laah Department of Physics, Faculty of Science, Nigerian Defence Academy, Kaduna, Kaduna State, Nigeria
  • Imosobomeh L. Ikhioya Department of Physics and Astronomy, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria

Keywords:

Betanin, Plasmonic, DSSC, Nanoparticle

Abstract

Metal nanoparticles (NPs) introduced in sensitive places in Dye Sensitized Solar Cells (DSSCs) has demonstrated superior performance due to surface plasmon resonance eect. Herein, a systematic investigation by introducing plasmonic silver nanoparticles (AgNPs) in the photoanode of DSSCs with Zinc oxide (ZnO) is investigated. The broadening of the absorption band in the visible region is made possible using the natural pigments betanins. The combined eect of UV-visible absorption spectroscopy, XRD technique, SEM and solar simulator were used to explore the surface plasmon resonance effect. The ZnO photoanode without Ag- NPs shows a Power Conversion Efficiency (PCE) of 0.156 %, Current Density (Jsc) of 0.477 mAcm-2, Open Circuit Voltage (Voc) of 0.762 V and Fill Factor (FF) of 0.431. On coating AgNPs on the pristine photoanode, the PCEs were improved significantly as compared with the pure ZnO based device. The AgNPs were deposited in cycles (2 cycles, 4 cycles and 6 cycles). The device with 2 cycles of Ag NPs, shows a PCE of 0.373 % which demonstrates an enhancement of 2.39 times to that of the prestine device.Also depositing 4 cycles of AgNPs results to PCE of 0.290 % which shows a leading of 0.134 %  ahead of the reference PCE. With 6 cycles of AgNPs deposited on the photoanode of bare ZnO NPs, it results to PCE of 0.244%, FF of 0.592, Jsc of 0.572 mAcm-2 and Voc of 0.722 V which also shows an enhancement of - 1.56 times, 1.37 times and 1.20 times in PCE, FF and Jsc over the device lacking AgNPs. These results show significant increment in performances of all the devices with silver inclusion. The performance is attributed to the reduced recombination of electron–hole pairs due to the Ag-ZnO junction and the generation of intense electric fields at the immediate vicinity of the sensitizer, resulting in enhanced light absorption.

Dimensions

G. Yirga, S. Tadesse & T. Yohannes, “Photoelectrochmeical Cell Based on Natural Pigments and ZnO Nanoparticles”, Journal of Energy and Natural Resources 5 (2016) 1.

S. Sreeja & B. Pesala, “Plasmonic enhancement of betanin-lawsone co-sensitized solar cells via tailored bimodal size distribution of silver nanoparticles”, Scientific Reports 10 (2020) 8240.

H. Nan, H. Shen, G.Wang, S-D. Xie, G-J. Yang & H. Lin, “Studies on the optical and photoelectric properties of anthocyanin and chlorophyll as natural co-sensitizers in dye sensitized solar cell.”, Optical Materials 73 (2017) 172.

E. Danladi, P. M. Gyuk & E. B. Danladi, “Chlorophyll and Betalain as Light-Harvesting Pigments for Nanostructured TiO2 Based Dye-Sensitized Solar Cells”, Journal of Energy and Natural Resources”, 5 (2016) 53.

M. A. M. Al-Alwani, N. A. Ludin, A. B. Mohamad, A. A. H. Kadhum & K. Sopian, “Extraction, preparation and application of pigments from Cordyline fruticosa and Hylocereus polyrhizus as sensitizers for dye-sensitized solar cells”, Spectrochimie Acta - Part A Molecular and Biomolecular Spectroscopy 179 (2017) 23.

G. Richhariya, A. Kumar, P. Tekasakul & B. Gupta, “Natural dyes for dye sensitized solar cell: A review”, Renewable and Sustainable Energy Reviews 69 (2017) 705.

C. Sandquist & J. L. McHale, “Improved eciency of betanin-based dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry 221 (2011) 90.

R. Ramamoorthy, N. Radha, G. Maheswari, S. Anandan, S. Manoharan & R. V. Williams, “Betalain and anthocyanin dye-sensitized solar cells”, Journal of Applied Electrochemistry 46 (2016) 929.

S. A. M. Al-Bat’hi, I. Alaei & I. Sopyan, “Natural photosensitizers for dye sensitized solar cells”, International Journal of Renewable Energy Research 3 (2013) 138.

S. Kim, M. Jahandar, J. H. Jeong & D. C. Lim, “Recent Progress in Solar Cell Technology for Low-Light Indoor Applications”, Current alternative energy 3 (2019) 3.

D. Eli, G. J. Ibeh, O. O. Ige, J. A. Owolabi, R. U. Ugbe, B. O. Sherifdeen, M. Y. Onimisi & H. Ali “Silver Nanoparticles as Nano Antenna for TiO2 Activation and its Application in DSSC for Enhanced Performance”, Physics Memoir:Journal of Theoretical and Applied Physics 1 (2019) 88.

M. R. Narayan, “Review: Dye sensitized solar cells based on natural photosensitizers”, Renewable and Sustainable Energy Reviews 16 (2012) 208.

I. D. Costa-Rocha, B. Bonnlaender, H. Sievers, I. Pischel & M. Heinrich, “Hibiscus sabdariffa L. – A phytochemical and pharmacological review”, Food Chemistry, 165 (2014) 424.

J. A. Bonacin, F. M. Engelmann, D. Severino, H. E. Toma & M. S. Baptista, “Singlet Oxygen Quantum Yields (') in Water using Beetroot

Extract and an Array of LEDs”, Journal of the Brazilian Chemical Society 20 (2009) 31.

B. D. Choudhury, C. Lin, S. M. Z. Shawon, J. S. Martinez, H. Huq & M. J. Uddin, “A photoanode with hierarchical nanoforest TiO2 structure and silver plasmonic nanoparticles for fexible dye sensitized solar cell”, Scientific Reports 11 (2021) 7552.

E. Danladi & P. M. Gyuk, “High Eciency Dye Sensitized Solar Cells by Excitation of Localized Surface Plasmon Resonance of AgNPs”, Science World Journal 14 (2019) 125.

M. Y. Onimisi, E. Danladi, S. G. Abdu, H. O. Aboh & E. Jonathan, “Size E ects of Silver Nanoparticles on the Photovoltaic Performance of Dye Sensitized Solar Cells”, American Chemical Science Journal 13 (2016) 1.

Q.Wali, A. Fakharuddin & R. Jose, “Tin oxide as a photoanode for dye-sensitised solar cells: Current progress and future challenges”, Journal of Power Sources293 (2015) 1039.

S. Khadtare, A. S. Ansari, H. M. Pathan, S. H. Han, K. M. Mahadevan, S. D. Mane &C. Bathula, “Silver nanoparticles loaded ZnO photoelectrode with Rose Bengal as a sensitizer for dye sensitized solar cells”, Inorganic Chemistry Communications 104 (2019) 155.

V. F. Nunes, A. P. S. Souza, F. Lima, G. Oliveira, F. N. Freire & A. F. Almeida, “E ects of Potential Deposition on the Parameters of ZnO dye-sensitized Solar Cells”, Materials Research 21 (2018) 1.

L. P. Joshi, Y. Poudel, M. L. Nakarmi, P. R. Niraula & S. P. Shrestha, “Preparation and Characterization of Zinc Oxide Based Photoanode for Dye-sensitized Solar Cell using Delonix Regia Natural Dye Extract”, Journal of Nepal Physical Society 4 (2017) 1.

N. Kicir, T. T¨uken, O. Erken, C. Gumus & Y. Ufuktepe, “Nanostructured ZnO films in forms of rod, plate and flower: Electrodeposition mechanisms and characterization”, Applied Surface Science 377 (2016) 191.

J. Hofmann & W. Steinman, “Plasma resonance in photoemission of silver”, Physica Status Solidi 30 (1968) 53.

J. G. Endriz & W. E. Spicer, “Surface-plasmon-one-electron decay and its observation in photoemission”, Physical Review Letters 24 (1970) 64.

E. Danladi, M. Ahmad, I. Maxwell, D. Ezra, A. Francis & S. Sarki, “Dye-Sensitized Solar Cells Using Natural Dyes Extracted from Roselle (Hibiscus Sabdari a) Flowers and Pawpaw (Carica Papaya) Leaves as Sensitizers”, Journal of Energy and Natural Resources 5 (2016) 11.

B. C. Mphande & A. Pogrebnoi, “Outdoor Photoelectrochemical Characterization of Dyes from Acalypha wilkesiana ‘Haleakala’ and Hibiscus sabdariffa as Dye Solar Cells Sensitizers” British Journal of Applied Science & Technology 7 (2015) 195.

H.K. Jun, M.A. Careem & A.K. Arof, “Plasmonic effects of quantum size gold nanoparticles on dye-sensitized solar cell, 5th International

Conference on Functional Materials & Devices (ICFMD 2015)”, Materials Today: Proceedings 3S (2016) S73.

M. Mrad, B. Chouchene & T. B. Chaabane, “E ects of Zinc Precursor, Basicity and Temperature on the Aqueous Synthesis of ZnO Nanocrystals”, South African journal of chemistry, 71 (2018) 103.

S. Xu & Z. L. Wang “One dimensional ZnO nanostructures: solution growth and functional properties”, Nano research 4 (2011) 1013.

D. Eli, M. Y. Onimisi, S. Garba & J. Tasiu, “9.05 % HTM free perovskite solar cell with negligible hysteresis by introducing silver nanoparticles

encapsulated with P4VP Polymer, SN Applied Sciences 2 (2020) 1769

S. Agnihotri, S. Mukherji & S. Mukherji, “Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial ecacy”, RSC Advances 4 (2014) 3974.

A. Dumbravˇa, I. Enache, C. I. Oprea, A. Georgescu & M. A. Gˆırt¸u, “Toward a more efcient utilisation of betalains as pigments for Dye-Sensitized solar cells” Digest Journal of Nanomaterials and Biostructures 7 (2012) 339.

N. Ruba S. Sowmya, P. Pooja, B. Janarthanan & P. A. Nagamani Prabu, “Dye-Sensitized Solar Cells Using a Cocktail of Synthetic (Eosin Y) and Natural (Beetroot, Pomegranate, and Kumkum) Dyes”, Brazilian Journal of Physics 51 (2021) 1459.

K. R. Chethan, Y. R. Mohammed, R. Mohammed, K. Y. Ramesh & K. Hemanth, “Extraction of Betalain Dye from Beetroot and Preparation of Organic DSSC”, International Journal of Scientific & Engineering Research 11 (2020) 165.

M. J. Garc´ıa-Salinas & M. J. Ariza, “Optimizing a Simple Natural Dye Production Method for Dye-Sensitized Solar Cells: Examples for Betalain (Bougainvillea and Beetroot Extracts) and Anthocyanin Dyes”, Applied Sciences 9 (2019) 2515.

K. Guo, M. Li, X. Fang, X. Liu, B. Sebo, Y. Zhu, Z. Hu & X. Zhao, “Preparation and enhanced properties of dye-sensitized solar cells by surface plasmon resonance of Ag nanoparticles in nanocomposite photoanode”, Journal of power sources 203 (2012) 155.

Y. M. Yeh, Y. S. Wang & J. H. Li, “Enhancement of the optical transmission by mixing the metallic and dielectric nanoparticles atop the silicon substrate”, Optics Express 19 (2011) A80.

T. J. Antosiewicz & T. Tarkowski, “Localized surface plasmon decay pathways in disordered two-dimensional nanoparticle arrays”, ACS Photonics 2 (2015) 1732.

N. Pazos-Perez, C. S. Wagner, J. M. Romo-Herrera, L. M. Liz-Marzan, F. J. Garcia de Abajo, A. Wittemann, A. Fery & A. Alvarez-Puebla, “Organized plasmonic clusters with high coordination number and extraordinary enhancement in surface-enhanced raman scattering (SERS)”, Angew Chemie 51 (2012) 12688.

F. L. Yap, P. Thoniyot, S. Krishnan & S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance through directed self-assembly on flat substrates and on optical fibers”, ACS Nano 6 (2012) 2056.

] F. M. Mohammadi & N. Ghasemi, “Infuence of temperature and concentration on biosynthesis and characterization of zinc oxide nanoparticles using cherry extract”, Journal of Nanostructure in Chemistry 8 (2018) 93.

B. Timothy, J.William, P. Alexandra, S. Ewa & P. Jerzy, “The role of anhydrous zinc nitrate in the thermal decomposition of the zinc hydroxy nitrates Zn5(OH)8(NO3)2.2H2O and ZnOHNO3.H2O”, Journal of Solid State Chemistry 180 (2007) 1171.

H. Hu, J. Shen, X. Cao, H. Wang, H. Lv, Y. Zhang, W. Zhu, J. Zhao & C. Cui, “Photo-assisted deposition of Ag nanoparticles on branched TiO2 nanorod arrays for dye-sensitized solar cells with enhanced eciency”, Journal of Alloy and Compound 694 (2017) 653.

Published

2022-04-29

How to Cite

Danladi, E., Muhammad Y. Onimisi, Reuben M. Laah, & Imosobomeh L. Ikhioya. (2022). High Performance Dye Sensitized Solar Cells by Plasmonic Enhancement of Silver Nanoparticles in ZnO Photoelectrode with Betanin Pigment. African Scientific Reports, 1(1), 1–15. Retrieved from https://asr.nsps.org.ng/index.php/asr/article/view/3

Issue

Section

Original Research