pH treatment on the optical and structural properties of niobium vanadium pentoxide nanoparticles for optoelectronics and energy storage applications

Authors

  • A. A. Ibiyemi Department of Physics, Federal University Oye-Ekiti, Ekiti State, Nigeria
  • J. I. Lawal Department of Physics, University of Ilesa, Osun State, Nigeria
  • S. K. Aminu Department of Physics, Federal University Oye-Ekiti, Ekiti State, Nigeria
  • A. G. Adewole Department of Physics, Federal University Oye-Ekiti, Ekiti State, Nigeria
  • B. M. Akinroye Department of Physics, Federal University Oye-Ekiti, Ekiti State, Nigeria and Department of Physics, Osun State College of Technology, Esa Oke, Osun State, Nigeria
  • A. C. Adeniran Department of Physics, Osun State College of Technology, Esa Oke, Osun State, Nigeria
  • O. A. Abulude Department of Physics, Osun State College of Technology, Esa Oke, Osun State, Nigeria

Keywords:

pH, Precipitation, Alkaline, Vanadium, Niobium

Abstract

In this work, vanadium pentoxide is doped with niobium (Nb) particles using co-precipitation technique and effect of pH in alkaline medium was examined. The impact of pH on the optical, chemical, luminescence, morphological and structural characteristics of Niobium intercalated into vanadium pentoxide made by precipitation technique is disclosed. XRD technique was used to examine the structural properties such as interplanar spacing of the samples. The high interplanar spacing of 5.7835 Å obtained at pH 12 show that NbV2O5 sample can be used in energy storage device due to its large spacing. The energy band gap is decreased with increasing pH. The energy band gap for Nb-V2O5 samples generated at pH 8, 10, and 12 are 2.70, 2.50, and 2.30 eV. At approximately 680 nm, NbV2O5 nanoparticles revealed the emission of red light at all pH. One of the most important factors in improving the optical properties and crystallinity of nanostructured niobium doped vanadium oxide is lowering the pH level of the media. These nanostructures have great promise for the advancement of technological applications, particularly in the areas of UV filtering due to high absorbance revealed within the UV wavelength range. Niobium-doped Vanadium oxide nanoparticle is presently discovered as one of the storage device due to its large Interplanar spacing of 5.7835 Å at pH 12.

Dimensions

[1] A. M. Omer, “Energy, environment and sustainable development”, Renew. Sustain. Energy Rev. 12 (2008) 2265. https://doi.org/10.1016/j.rser.2007.05.001.

[2] J. Zhu, X. Chen & A. Q. Thang, “Vanadium-based metalorganic frameworks and their derivatives for electrochemical energy conversion and storage”, Smart Mat. 3 (2022) 384. https://doi.org/10.1002/smm2.1091.

[3] T. Li, X. Peng & P. Cui, “Recent progress and future perspectives of flexible metal–air batteries”, Smart Mat. 2 (2021) 519. https://doi.org/10.1002/smm2.1076.

[4] F. Li, Y. Li & J. Qu, “Recent developments of stamped planar micro-supercapacitors: materials, fabrication and perspectives”, Nano Mater. Sci. 3 (2021) 154. https://doi.org/10.1016/j.nanoms.2020.10.003.

[5] X. Wu, R. Liu, J. Zhao & Z. Fan, “Advanced carbon materials with different spatial dimensions for supercapacitors”, Nano Mater. Sci. 3 (2021) 241. https://doi.org/10.1016/j.nanoms.2021.01.002.

[6] X. Wang, J. Chai & J. Jiang, “Redox flow batteries based on insoluble redox-active materials: a review”, Nano Mater. Sci. 3 (2021) 17. https://doi.org/10.1016/j.nanoms.2020.06.003.

[7] J. Zhang, M. Li, H. A. Younus, B. Wang, Q. Weng, Y. Zhang & S. Zhang, “An overview of the characteristics of advanced binders for high-performance Li-S batteries”, Nano Mater. Sci. 3 (2021) 124. https://doi.org/10.1016/j.nanoms.2020.10.006.

[8] F. Wu, H. Yang, Y. Bai & V. Wu, “Paving the path toward reliable cathode materials for aluminum-ion batteries”, Adv. Mater. 31 (2019) 1806510. https://doi.org/10.1002/adma.201806510.

[9] Y. Hu, D. Ye & B. B. Luo, “A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries”, Adv. Mater. 30 (2018) 1703824. https://doi.org/10.1002/adma.201703824.

[10] M. C. Lin, M. Gong, B. Lu, Y. Wu, D. Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B. J. Hwang & H. Dai, “An ultrafast rechargeable aluminium-ion battery”, Nature 520 (2015) 324. https://doi.org/10.1038/nature14340.

[11] J. Sun, T. Wang, Y. Gao, Z. Pan, R. Hu & J. Wang, “Will lithium–sulfur batteries be the next beyond-lithium ion batteries and even much better?”, InfoMat 4 (2022) e12359. https://doi.org/10.1002/inf2.12359.

[12] H. Hou, X. Qiu, W. Wei, Y. Zhang & X. Ji, “Carbon anode materials for advanced sodium-ion batteries”, Adv. Energy Mater. 7 (2017) 1602898. https://doi.org/10.1002/aenm.201602898.

[13] K. Song, C. Liu, L. S. Mi, S. Chou, W. Chen & C. Shen, “Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries”, Small 17 (2021) 1903194. https://doi.org/10.1002/smll.201903194.

[14] W. Zong, H. Guo, Y. Ouyang, L. Mo, C. Zhou, G. Chao, J. Hofkens, Y. Xu, W. Wang, Y. E. Miao, G. He, I. P. Parkin, F. Lai & T. Liu, “Topochemistry-driven synthesis of transition-metal selenides with weakened van der Waals force to enable 3D-printed Na-ion hybrid capacitors”, Adv. Funct. Mater. 32 (2022) 2110016. https://doi.org/10.1002/adfm.202110016.

[15] J. Zhou & S. Guo, “Carbon-based anode materials for potassium ion batteries: from material, mechanism to performance”, Smart Mat. 2 (2021) 176. https://doi.org/10.1002/smm2.1042.

[16] Y. R. Pei, M. Zhao, Y. P. Zhu, C. C. Yang & Q. V. N. Jiang, “Nanoparticle-assembled hollow microspheres/N-doped carbon nanofibers: an anode material for superior potassium storage”, Nano Mater. Sci. 4 (2022) 104. https://doi.org/10.1016/j.nanoms.2021.06.007.

[17] K. Zhu, T. Wu & K. A. Huang, “High-voltage activated high-performance cathode for aqueous Zn-ion batteries”, Energy Storage Mater. 38 (2021) 473. https://doi.org/10.1016/j.ensm.2021.03.031.

[18] L. Wang, K.-W. Huang, J. Chen & J. Zheng, “Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes”, Sci. Adv. 5 (2019) eaax4279. https://doi.org/10.1126/sciadv.aax4279.

[19] L. Chen, Z. Yang, F. Cui, J. Meng, H. Chen & X. Zeng, “Enhanced rate and cycling performances of hollow V2O5 nanospheres for aqueous zinc ion battery cathode”, Appl. Surf. Sci. 507 (2020) 145137. https://doi.org/10.1016/j.apsusc.2019.145137.

[20] B. Gherbi, S. E. Laouini, S. Meneceur, A. Bouafia, H. Hemmami, M. L. Tedjani, G. Thiripuranathar, A. Barhoum & F. Menaa, “Effect of pH value on the band gap energy and particles size for biosynthesis of ZnO nanoparticles: efficiency for photocatalytic adsorption of methyl orange”, Sustain. 14 (2022) 11300. https://doi.org/10.3390/su141811300.

[21] J. Feng, Y. Wang, S. Liu, S. Chen, N. Wen, X. Zeng, Y. Dong, C. Huang, Q. Kuang & Y. Zhao, “Electrochemically induced structural and morphological evolutions in nickel vanadium oxide hydrate nanobelts enabling fast transport kinetics for high-performance zinc storage”, ACS Appl. Mater. Interfaces 12 (2020) 24726. https://doi.org/10.1021/acsami.0c04199.

[22] M. Yalcin, “The effect of pH on the physical and structural properties of TiO2 nanoparticles”, J. Cryst. Growth 585 (2022) 126603. https://doi.org/10.1016/j.jcrysgro.2022.126603.

[23] R. Ashraf, S. Riaz, S. S. Hussain & S. Naseem, “Effect of pH on properties of ZnO nanoparticles”, Mater. Today: Proc. 2 (2015) 5754. https://doi.org/10.1016/j.matpr.2015.11.123.

[24] V. P. Prasadam, F. Bahlawane, G. Mattelaer, C. D. Rampelberg, L. Fang, Y. Jiang, K. Martens, I. P. Parkin & I. Papakonstantinou, “Atomic layer deposition of vanadium oxides: process and application review”, Mater. Today Chem. 12 (2019) 396. https://doi.org/10.1016/j.mtchem.2019.03.004.

[25] S. Saleem, M. N. Ashiq, S. Manzoor, U. Ali, R. Liaqat, A. Algahtani, S. Mujtaba, V. Tirth, A. M. Alsuhaibani, M. S. Refat, A. Ali, M. Aslam & R. Zaman, “Analysis and characterization of opto-electronic properties of iron oxide (Fe2O3) with transition metals (Co, Ni) for the use in the photodetector application”, J. Mater. Res. Technol. 25 (2023) 6150. https://doi.org/10.1016/j.jmrt.2023.07.065.

[26] Y. Liu, Y. An & L. Wu, “Interfacial chemistry modulation via amphoteric glycine for a highly reversible zinc anode”, ACS Nano 17 (2023) 552. https://doi.org/10.1021/acsnano.2c09317.

[27] Y. Dai, X. Liao & R. Yu, “Quicker and more Zn2+ storage predominantly from the interface”, Adv. Mater. 33 (2021) 2100359. https://doi.org/10.1002/adma.202100359.

[28] J. Shin, D. S. Choi, H. J. Lee, Y. Jung & J. W. Choi, “Hydrated intercalation for high-performance aqueous zinc ion batteries”, Adv. Energy Mater. 9 (2019) 1900083. https://doi.org/10.1002/aenm.201900083.

[29] P. He, G. Zhang & X. Liao, “Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries”, Adv. Energy Mater. 8 (2018) 1702463. https://doi.org/10.1002/aenm.201702463.

[30] H. Tian, Y. He, L. Wang, Y. Lai, J. Wang, H. Xiang, W. Zhao & L. Zhang, “Simultaneous pre-intercalation of caesium and sodium ions into vanadium oxide bronze nanowires for high-performance aqueous zinc-ion batteries”, Mater. Chem. Front. 6 (2022) 1920. https://doi.org/10.1039/D2QM00420H.

[31] X. Pang, S. Ji, P. Zhang, W. Feng, L. Zhang, K. Li, Y. Tang & Y. Liu , “Interlayer doping of pseudocapacitive hydrated vanadium oxide via Mn2+ for high-performance aqueous zinc-ion battery”, Electrochim. Acta 441 (2023) 141810. https://doi.org/10.1016/j.electacta.2022.141810.

[32] F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi & H. N. Alshareef, “Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries”, ACS Energy Lett. 3 (2018) 2602. https://doi.org/10.1021/acsenergylett.8b01423.

[33] Q. Li, X. Ye, H. Yu, C. Du, W. Sun, W. Liu, H. Pan & X. Rui, “Pre-potassiated hydrated vanadium oxide as cathode for quasi-solid-state zinc-ion battery”, Chin. Chem. Lett. 33 (2022) 2663. https://doi.org/10.1016/j.cclet.2021.09.091.

[34] S. Castro-Lopes, Y. Guerra, A. Silva-Sousa, D. M. Oliveira, L. A. P. Gonçalves, A. Franco, E. Padrón-Hernández & R. Peña-Garcia, “Influence of pH on the structural and magnetic properties of Fe-doped ZnO nanoparticles synthesized by sol gel method”, Solid State Sci. 109 (2020) 106438. https://doi.org/10.1016/j.solidstatesciences.2020.106438.

[35] L. Zhongshao, Z. Shuwen, S. Zewei, J. Hanxiang, H. Aibin, J. Ping & C. Xun, “Deterioration mechanism of vanadium dioxide smart coatings during natural aging: uncovering the role of water”, Chem. Eng. 447 (2022) 137556. https://doi.org/10.1016/j.cej.2022.137556.

[36] S. Arshad, A. Hussain, S. Noreen, M. B. Tahir, J. Rehman, M. Jabeen, M. H. Benish & S. Rahman, “Structural, mechanical, electronic and optical properties of MFe2O4 (M=Zn, Cu, Si) ferrites for electrochemical, photocatalytic and optoelectronic applications”, J. Solid State Chem. 330 (2024) 124504. https://doi.org/10.1016/j.jssc.2023.124504.

[37] A. A. Ibiyemi, A. Olusola & G. T. Yusuf, “Photoelectric and optoelectronic effects of hard ferromagnetic manganese cobalt (Mn-Co) ferrite nanoparticles for high frequency device application”, Appl. Phys. A: Mater. Sci. Process. 128 (2022) 792. https://doi.org/10.1088/1402-4896/ac4a95.

Published

2025-06-29

How to Cite

pH treatment on the optical and structural properties of niobium vanadium pentoxide nanoparticles for optoelectronics and energy storage applications. (2025). African Scientific Reports, 4(2), 310. https://doi.org/10.46481/asr.2025.4.2.310

How to Cite

pH treatment on the optical and structural properties of niobium vanadium pentoxide nanoparticles for optoelectronics and energy storage applications. (2025). African Scientific Reports, 4(2), 310. https://doi.org/10.46481/asr.2025.4.2.310