Investigation of the spatial distribution of deterministic chaos in some meteorological variables across Nigeria

Authors

  • I. M. Echi
    Department of Physics, Joseph Sarwuan Tarka University, Makurdi, Nigeria
  • E. V. Tikyaa
    Department of Physics, Joseph Sarwuan Tarka University, Makurdi, Nigeria
    https://orcid.org/0000-0002-7641-8070
  • E. J. Eweh
    Department of Physics, Joseph Sarwuan Tarka University, Makurdi, Nigeria
  • A. A. Tyovenda
    Department of Physics, Joseph Sarwuan Tarka University, Makurdi, Nigeria
  • T. Igbawua
    Department of Physics, Joseph Sarwuan Tarka University, Makurdi, Nigeria

Keywords:

Nonlinear dynamics, Chaos, Correlation dimension, Lyapunov exponents, Approximate entropy

Abstract

In this study, the spatial variation of dynamical complexities in selected meteorological variables over Nigeria were investigated. Quantitative tools of nonlinear analysis such as correlation dimension, Lyapunov exponents and approximate entropy were implemented on daily mean values of meteorological variables recorded across Nigeria from 1982-2020. Results obtained from the analysis confirms that there is low-dimensional deterministic chaotic dynamics in the climate across Nigeria as a result of the positive Lyapunov exponent values obtained; with values spatially ranging from 0.00181-0.0591 for precipitation, 0.00696-0.277 for wind speed, 0.00369-0.26 for temperature and 0.00109-0.00698 for all sky radiation. It was observed that the northern part of the country has higher degree of chaos in precipitation and air temperature as the Lyapunov exponents increased latitudinally while the southern part exhibits more chaotic dynamics in wind speed and all-sky radiation as a result of coastal effects. Correlation dimension values for precipitation significantly affirmed nonlinearity with values ranging spatially from 0.106-2.34 (increasing latitudinally from North to South) while wind speed (3.81-4.26), air temperature (3.55-4.25) and all sky radiation (3.59-4.25) also affirmed nonlinearity and low dimensional chaos but showed insignificant spatial trends across the country. Furthermore, precipitation was found to exhibit more steady repetitive pattern in the northern part of the country with entropy values ranging from 0.359-0.837 while wind speed, air temperature and all-sky radiation showed less repetitive patterns along the border locations in the far north and coastal cities in the south with entropy values ranging from 0.703-0.932, 0.724-0.892 and 0.718-0.877 respectively. The irregular trends are attributed to local and external factors such as human anthropogenic activities leading to greenhouse gas emission/global warming, topography of these locations and variations in the position of the Inter-Tropical Discontinuity as a result of different nonlinear resonances emanating from the coupling of the oceans, the atmospheric system and the El Nino/Southern Oscillations (ENSO).

Dimensions

[1] E. N. Lorenz, “Deterministic nonperiodic flow”, in The theory of chaotic attractors, B. R. Hunt, T. Y. Li, J. A. Kennedy & H. E. Nusse (Eds.), Springer, New York, NY, USA, 2004, pp. 1. https://doi.org/10.1007/978-0-387-21830-4_2. DOI: https://doi.org/10.1007/978-0-387-21830-4_2

[2] X. Zeng, “Chaos theory and its application in the atmosphere”, Dept. of Atmos. Sci., Colorado State University, Fort Collins, Paper No. 504 (1992) 5. https://mountainscholar.org/bitstream/handle/10217/32305/0504_Bluebook.pdf.

[3] A. Sharma & U. Datta, “A weather forecasting system using concept of soft computing: a new approach”, AIP Conf. Proc. 923 (2007) 275. https://doi.org/10.1063/1.2767047. DOI: https://doi.org/10.1063/1.2767047

[4] G. H. R. Joice & K. Thamilhazan, “Impact of tsunami on Tamil Nadu monsoon rainfall”, APRN J. Sci. Technol. 2 (2012) 96. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a607e33f2cff92bb37dcbeddf9eaac2ec5d27135#:∼:text=The%20Lyapunov%20exponent%20value%20for,are%20showing%20a%20chaotic%20behaviour.

[5] T. Fathima & V. Jothiprakash, “Behavioural analysis of a time series-a chaotic approach”, Project Saadhana 39 (2014) 659. https://doi.org/10.1007/s12046-014-0249-2. DOI: https://doi.org/10.1007/s12046-014-0249-2

[6] I. M. Echi, E. V. Tikyaa & B. C. Isikwue, “Dynamics of rainfall and temperature in Makurdi”, Int. J. Sci. Res. 4 (2015) 493. https://doi.org/10.21275/SUB156176.

[7] I. A. Fuwape, S. T. Ogunjo, S. S. Oluyamo & A. B. Rabiu, “Spatial variation of deterministic chaos in mean daily temperature and rainfall over Nigeria”, Theor. Appl. Climatol. 130 (2016) 119. https://doi.org/10.1007/s00704-016-1867-x. DOI: https://doi.org/10.1007/s00704-016-1867-x

[8] S. Ogunjo, I. Fuwape, S. Oluyamo & B. Rabiu, “Spatial dynamical complexity of precipitation and temperature extremes over Africa and South America”, Asia-Pac. J. Atmos. Sci. 60 (2019) 15. https://doi.org/10.1007/s13143-019-00131-y. DOI: https://doi.org/10.1007/s13143-019-00131-y

[9] A. T. Adewole, E. O. Falayi, T. O. Roy-Layinde & A. D. Adelaja, “Chaotic time series analysis of meteorological parameters in some selected stations in Nigeria”, Sci. Afr. 10 (2020) e00617. https://doi.org/10.1016/j.sciaf.2020.e00617. DOI: https://doi.org/10.1016/j.sciaf.2020.e00617

[10] S. Ogunjo, A. Olusola, I. Fuwape & O. Durowoju, “Temporal variation in deterministic chaos: the influence of Kainji dam on downstream stations along lower Niger River”, Arab. J. Geosci. 15 (2022) 237. https://doi.org/10.1007/s12517-021-09297-0. DOI: https://doi.org/10.1007/s12517-021-09297-0

[11] F. Takens, “Detecting strange attractors in turbulence”, Lect. Notes Math. 898 (1981) 366. https://doi.org/10.1007/BFb0091924. DOI: https://doi.org/10.1007/BFb0091924

[12] N. Packard, J. Crutchfield, J. Farmer & R. Shaw, “Geometry from a time series”, Phys. Rev. Lett. 45 (1980) 712. https://doi.org/10.1103/PhysRevLett.45.712. DOI: https://doi.org/10.1103/PhysRevLett.45.712

[13] A. M. Fraser & H. L. Swinney, “Independent coordinates for strange attractors from mutual information”, Phys. Rev. A 33 (1986) 1134. https://doi.org/10.1103/PhysRevA.33.1134. DOI: https://doi.org/10.1103/PhysRevA.33.1134

[14] M. B. Kennel, R. Brown & H. D. Abarbanel, “Determining embedding dimension for phase-space reconstruction using a geometrical construction”, Phys. Rev. A 45 (1992) 3403. https://doi.org/10.1103/PhysRevA.45.3403. DOI: https://doi.org/10.1103/PhysRevA.45.3403

[15] J. Theiler, “Efficient algorithm for estimating the correlation dimension from a set of discrete points”, Phys. Rev. A 36 (1987) 44. https://doi.org/10.1103/PhysRevA.36.4456. DOI: https://doi.org/10.1103/PhysRevA.36.4456

[16] W. Caesarendra, P. Kosasih, K. Tieu & C. Moodie, “An application of nonlinear feature extraction-a case study for low speed slewing bearing condition monitoring and prognosis”, IEEE/ASME Int. Conf. Adv. Intell. Mechatron., Wollongong, NSW, Australia 2013 (2013) 1713. https://doi.org/10.1109/AIM.2013.6584344. DOI: https://doi.org/10.1109/AIM.2013.6584344

[17] D. Kaplan & L. Glass, Understanding nonlinear dynamics, Springer, New York, USA, 1995, pp. 278. https://doi.org/10.1007/978-1-4612-0823-5. DOI: https://doi.org/10.1007/978-1-4612-0823-5

[18] M. Y. Boon, B. I. Henry, C. M. Suttle & S. J. Dain, “The correlation dimension: a useful objective measure of the transient visual evoked potential?”, J. Vis. 8 (2008) 6. https://doi.org/10.1167/8.1.6. DOI: https://doi.org/10.1167/8.1.6

[19] P. Grassberger & I. Procaccia, “Characterization of strange attractors”, Phys. Rev. Lett. 50 (1983) 346. https://doi.org/10.1103/PhysRevLett.50.346. DOI: https://doi.org/10.1103/PhysRevLett.50.346

[20] F. Mitschke & M. Dammig, “Chaos versus noise in experimental data”, Int. J. Bifurcat. Chaos 3 (1993) 693. https://doi.org/10.1142/S021812749300060X. DOI: https://doi.org/10.1142/S021812749300060X

[21] D. Prichard & J. Theiler, “Generating surrogate data for time series with several simultaneously measured variables”, Phys. Rev. Lett. 73 (1994) 951. https://doi.org/10.1103/PhysRevLett.73.951. DOI: https://doi.org/10.1103/PhysRevLett.73.951

[22] M. Rosenstein, J. J. Collins & C. De Luca, “A practical method for calculating largest Lyapunov exponents from small data sets”, Phys. D 65 (1993) 117. http://doi.org/10.1016/0167-2789(93)90009-P. DOI: https://doi.org/10.1016/0167-2789(93)90009-P

[23] S. M. Pincus, “Approximate entropy as a measure of system complexity”, Proc. Natl. Acad. Sci. USA 88 (1991) 2297. https://doi.org/10.1073/pnas.88.6.2297. DOI: https://doi.org/10.1073/pnas.88.6.2297

[24] U. R. Acharya, F. Molinari, S. V. Sree, S. Chattopadhyay, N. Kwan-Hoong & J. S. Suri, “Automated diagnosis of epileptic EEG using entropies”, Biomed. Signal Process. Control 7 (2012) 401. https://doi.org/10.1016/j.bspc.2011.07.007. DOI: https://doi.org/10.1016/j.bspc.2011.07.007

[25] Worldmeters, “World population prospects: the 2015 revision”, (2017). [Online]. Retrieved from http://www.worldmeters.info.[26] M. P. Lewis, F. S. Gary & D. F. Charles, Ethnologue: languages of the world, SIL International, Dallas, Texas, USA, 2017. http://www.ethnologue.com/country/ng.

[27] D. S. Ragatoa, K. O. Ogunjobi, N. A. B. Klutse, A. A. Okhimamhe & J. O. Eichie, “A change comparison of heat wave aspects in climatic zones of Nigeria”, Environ. Earth Sci. 78 (2019) 111. https://doi.org/10.1007/s12665-019-8112-8. DOI: https://doi.org/10.1007/s12665-019-8112-8

[28] R. Gelaro, W. McCarty, M. J. Suárez, R. Todling, A. Molod, L. Takacs, C. Randles, A. Darmenov, M. G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper, S. Akella, V. Buchard, A. Conaty, A. da Silva, W. Gu, G. K. Kim, R. Koster, R. Lucchesi, D. Merkova, J. E. Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker, S. D. Schubert, M. Sienkiewicz & B. Zhao, “The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)”, J. Clim. 30 (2017) 5419. https://doi.org/10.1175/JCLI-D-16-0758.1. DOI: https://doi.org/10.1175/JCLI-D-16-0758.1

[29] D. Kwiatkowski, P. C. B. Phillips, P. Schmidt & Y. Shin, “Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root?”, J. Econom. 54 (1992) 159. https://doi.org/10.1016/034-4076(92)90104-Y. DOI: https://doi.org/10.1016/0304-4076(92)90104-Y

[30] P. Jain & M. D. Flannigan, “Comparison of methods for spatial interpolation of fire weather in Alberta, Canada”, Can. J. For. Res. 47 (2017) 1646. https://doi.org/10.1139/cjfr-2017-0101. DOI: https://doi.org/10.1139/cjfr-2017-0101

[31] African Center of Meteorological Applications for Development (ACMAD), “Climatic and environmental conditions over Africa”, Clim. Health Bull. 5 (2012). [Online]. Retrieved from http://acmad.org.

[32] P. C. Oguntunde, B. Abiodun & G. Lischeid, “Spatial and temporal temperature trends in Nigeria, 1901-2000”, Meteorol. Atmos. Phys. 118 (2012) 95. https://doi.org/10.1007/s00703-012-0199-3. DOI: https://doi.org/10.1007/s00703-012-0199-3

[33] A. Sheshadri, M. Borrus, M. Yoder & T. Robinson, “Midlatitude error growth in atmospheric GCMs: the role of eddy growth rate”, Geophys. Res. Lett. 48 (2021) 1. https://doi.org/10.1029/2021/GL096126. DOI: https://doi.org/10.1029/2021GL096126

[34] E. Tiperman, L. Stone, M. A. Cane & H. Jarosh, “El Nino chaos: overlapping of resonances between the seasonal cycle and the Pacific Ocean-atmosphere oscillator”, Science 264 (1994) 72. https://doi.org/10.1126/science.264.5155.72. DOI: https://doi.org/10.1126/science.264.5155.72

[35] H. Millan, B. Ghanbarian-Alavijeh & I. Garcia-Fornaris, “Non-linear dynamics of mean daily temperature and dewpoint time series at Balolsar, Iran, 1961-2005”, Atmos. Res. 98 (2010) 89. https://doi.org/10.1016/j.atmosres.2010.06.001. DOI: https://doi.org/10.1016/j.atmosres.2010.06.001

[36] J. Garthwaithe, “Climate of chaos: why warming makes weather less predictable”, Stanford Earth Matters: Clim. Change Nat. Matters. [Online]. Retrieved from https://earth.stanford.edu/news/climate-chaos-why-warming-makes-weather-less-predictable on 23/6/2022.

[37] F. Jin, J. D. Neelin & M. Ghil, “El Nino on the devil’s staircase: annual subharmonic steps to chaos”, Science 264 (1994) 70. https://doi.org/10.1126/science.264.5155.70. DOI: https://doi.org/10.1126/science.264.5155.70

Published

2025-08-01

How to Cite

Investigation of the spatial distribution of deterministic chaos in some meteorological variables across Nigeria. (2025). African Scientific Reports, 4(2), 280. https://doi.org/10.46481/asr.2025.4.2.280

How to Cite

Investigation of the spatial distribution of deterministic chaos in some meteorological variables across Nigeria. (2025). African Scientific Reports, 4(2), 280. https://doi.org/10.46481/asr.2025.4.2.280

Most read articles by the same author(s)