Role of Van der Waals correction on the catalytic performance of 1T-TiS₂ electrocatalyst

Authors

  • Shamsuddeen Sani Alhassan
    Department of Physics, Umaru Musa Yar'adua University, Katsina, P.M.B. 2218, Katsina State, Nigeria
  • Mahmud Abdulsalam
    Department of Physics, Umaru Musa Yar'adua University, Katsina, P.M.B. 2218, Katsina State, Nigeria
  • Abdullahi Tanimu
    Department of Physics, Umaru Musa Yar'adua University, Katsina, P.M.B. 2218, Katsina State, Nigeria
  • Ibrahim Muhammad Bagudo
    Department of Physics, Umaru Musa Yar'adua University, Katsina, P.M.B. 2218, Katsina State, Nigeria

Keywords:

Vander Waals interactions, Catalytic performance, Density functional theory, Adsorbed hydrogen

Abstract

In this paper, the role of Van der Waals (vdW) correction on the catalytic performance of 1T- TiS2 material was investigated within the framework of density functional theory (DFT) and dispersion-corrected density functional theory (DFT-D3). The exchange-correlation functional was approximated using generalized gradient approximation (GGA) as parameterized by Perdew-Burke-Ernzerhof (PBE). Based on our results, the calculated lattice parameters were a =3.33 Å and a =3.32 Å upon calculations without and with inclusion of vdW correction, respectively, which indicated a slight reduction of ∼ 0.3% when vdW correction was included. In both cases, the value of a was in good agreement with previous experimental and theoretical data. However, the distances between the adsorbed hydrogen (H) and the surface of the catalyst were affected by the vdW correction. Our findings also showed that the vdW correction has an impact on the catalytic performance of 1T-TiS2. The Gibbs free energy change for hydrogen adsorption (ΔGH) calculated for the most stable adsorption location was ∼ - 0.55 eV and ∼ - 0.53 eV without and with vdW correction, respectively. This revealed that the one calculated with the inclusion of vdW correction is closer to the optimal value. Therefore, this emphasized the need of including a vdW correction in any DFT study that involves catalytic properties of this material and its related members for more accurate and reliable results.

Dimensions

[1] J. D. Van der Waals, “Over de Continuiteit van den Gas- en Vloeistoftoestand (on the continuity of the gas and liquid state)”, Ph.D. dissertation, Physics Department, Leiden University, Leiden, Netherlands, 1873. http://hdl.handle.net/1887.1/item:3669504.

[2] L. Sun, M. Gao, Z. Jing, Z. Cheng, D. Zheng, H. Xu, Q. Zhou & J. Lin, “1T phase enriched P doped WS2 nanosphere for highly efficient electrochemical hydrogen evolution reaction”, Chemical Engineering Journal 429 (2022) 132187. https://doi.org/10.1016/j.cej.2021.132187. DOI: https://doi.org/10.1016/j.cej.2021.132187

[3] S. S. Alhassan, M. Abdulsalam & A. Tanimu, “Application of Transition metals dichalcogenides in electrocatalytic splitting of water for hydrogen production: A review”, Nigerian journal of physics 34 (2025) 44. https://doi.org/10.62292/njp.v34i2.2025.366. DOI: https://doi.org/10.62292/10.62292/njp.v34i2.2025.366

[4] G. Giuffredi, T. Asset, Y. Liu, P. Atanassov & F. Di Fonzo, “Transition metal chalcogenides as a versatile and tunable platform for catalytic CO2 and N2 electroreduction”, ACS Materials Au 1 (2021) 6. https://doi.org/10.1021/acsmaterialsau.1c00006. DOI: https://doi.org/10.1021/acsmaterialsau.1c00006

[5] L. Masaityte, “Synthesis and investigation of MX2 (M = Ti, V, Cr; X = S,Se) as electrocatalysts for the hydrogen evolution reaction”, PhD dissertation, School of chemistry, University of Glasgow, Glasgow, United Kingdom, 2023. https://theses.gla.ac.uk/83404/S.

[6] R. Matteo, Ambrosetti A. & S. PierLuigi, “Improving the description of interlayer bonding in TiS2 by density functional theory”, J. Phys. Chem. C 124 (2020) 27592. https://dx.doi.org/10.1021/acs.jpcc.0c09460. DOI: https://doi.org/10.1021/acs.jpcc.0c09460

[7] W. Kohn & L. J. Sham, “Self-consistent equations including exchange and correlation effects”, Phys. Rev. 140 (1965) A1133. https://doi.org/10.1103/physrev.140.a1133. DOI: https://doi.org/10.1103/PhysRev.140.A1133

[8] J. P. Perdew, K. Burke & M. Ernzerhof, “Generalized gradient approximation made simple”, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/physrevlett.77.3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

[9] S. Grimme, J. Antony, S. Ehrlich & H. Krieg, “A consistent and accurate Ab initio parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu”, J. Chem. Phys. 132 (2010) 154104. https://doi.org/10.1063/1.3382344. DOI: https://doi.org/10.1063/1.3382344

[10] S. Grimme, “Accurate description of van der Waals complexes by density functional theory including empirical corrections”, J. Comput. Chem. 25 (2004) 1463. https://doi.org/10.1002/jcc.20078. DOI: https://doi.org/10.1002/jcc.20078

[11] S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction”, J. Comput. Chem. 27 (2006) 1787. https://doi.org/10.1002/jcc.20495. DOI: https://doi.org/10.1002/jcc.20495

[12] A. D. Becke & E. R. Johnson, “Exchange-hole dipole moment and the dispersion interaction: high-order dispersion coefficients”, J. Chem. Phys. 124 (2006) 014104. https://doi.org/10.1063/1.2139668. DOI: https://doi.org/10.1063/1.2139668

[13] O. A. Vydrov & T. Van Voorhis, “Nonlocal van der Waals density functional: the simpler the better”, J. Chem. Phys. 133 (2010) 244103. https://doi.org/10.1063/1.3521275. DOI: https://doi.org/10.1063/1.3521275

[14] R. Sabatini, T. Gorni & S. de Gironcoli, “Nonlocal van der Waals density functional made simple and efficient”, Phys. Rev. B: Condens. Matter Mater. Phys. 87 (2013) 041108. https://doi.org/10.1103/physrevb.87.041108. DOI: https://doi.org/10.1103/PhysRevB.87.041108

[15] Y. G. Irina, A. S. Maria, A. S. Roman, & C. N. Erik, “Effect of van der Waals interactions on the adhesion strength at the interface of the hydroxyapatite–titanium biocomposite: a first-principles study”, RSC Adv. 10 (2020) 37800. https://doi.org/10.1039/d0ra06006b. DOI: https://doi.org/10.1039/D0RA06006B

[16] M. Ismail, S. Alhassan, K. I. Aliyu, S. G. Abdu, M. A. Alothoum, A. F. Al Naim, A. R. Abuzir, S. A. Mansour, S. A. Yamusa & N. Rekik, “Evaluating the performance of the exchange correlation of the hybrid vdW-DF2, in comparison to rVV10 and PBE functionals: Showcasing the impact on the physical properties of transition metal dichalcogenides”, Physica B: Condensed Matter 713 (2025) 417316. https://doi.org/10.1016/j.physb.2025.417316. DOI: https://doi.org/10.1016/j.physb.2025.417316

[17] G. Paola, B. Stefano, B. Nicola, C. Matteo, C. Roberto, C. Carlo, C. Davide, L. C. Guido, C. Matteo & D. Ismail, “Quantum ESPRESSO: a modular and opensource software project for quantum simulations of materials”, Journal of Physics: condensed matter 21 (2009) 395502. https://doi.org/10.1088/0953-8984/21/39/395502. DOI: https://doi.org/10.1088/0953-8984/21/39/395502

[18] H. J. Monkhorst & J. D. Pack, “Special points for Brillouin-zone intergrations”, Physical Review B 13 (1976) 5188. https://doi.org/10.1103/physrevb.13.5188. DOI: https://doi.org/10.1103/PhysRevB.13.5188

[19] K. Momma & F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data”, J. Appl. Crystallogr. 44 (2011) 1272. https://doi.org/10.1107/s0021889811038970. DOI: https://doi.org/10.1107/S0021889811038970

[20] Q. Fu, J. Han, X. Wang, P. Xu, T. Yao, J. Zhong, W. Zhong, S. Liu, T. Gao, Z. Zhang, L. Xu & B. Song, “2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis”, Advanced Materials 33 (2020) 1907818. https://doi.org/10.1002/adma.202170045. DOI: https://doi.org/10.1002/adma.201907818

[21] J. X. Liu, H. J. Yin, P. R. Liu, S. Chen, S. W. Yin, W. L. Wang, H. J. Zhao & Y. Wang “Theoretical understanding of electrocatalytic hydrogen production performance by low-dimensional metal-organic frameworks on the basis of resonant charge-transfer mechanisms”, Journal of Physical Chemical Letters 10 (2019) 6955. https://doi.org/10.1021/acs.jpclett.9b02729. DOI: https://doi.org/10.1021/acs.jpclett.9b02729

[22] L. Lin, P. Sherrell, Y. Liu, W. Lei, S. Zhang, H. Zhang, G. G. Wallace & J. Chen, “Engineered 2D transition metal dichalcogenides-a vision of viable hydrogen evolution reaction catalysis”, Advanced Energy Materials 10 (2020) 1903870. https://doi.org/10.1002/aenm.202070074. DOI: https://doi.org/10.1002/aenm.201903870

[23] P. Prabhu, V. Jose & J.-M. Lee, “Design strategies for development of TMD-based heterostructures in electrochemical energy systems”, Matter 2 (2020) 526. https://doi.org/10.1016/j.matt.2020.01.001. DOI: https://doi.org/10.1016/j.matt.2020.01.001

[24] L. Wu & J. P. Hofmann, “Comparing the intrinsic HER activity of transition metal dichalcogenides: pitfalls and suggestions”, ACS Energy Letters 6 (2021) 2619. https://doi.org/10.1021/acsenergylett.1c00912. DOI: https://doi.org/10.1021/acsenergylett.1c00912

[25] H. Huang, G. Hu, C. Hu & X. Fan, “Enhanced hydrogen evolution reactivity of T’-phase tungsten dichalcogenides (WS2, WSe2, and WTe2) Materials: A DFT Study”, International Journal of Molecular Sciences 23 (2022) 11727. https://doi.org/10.3390/ijms231911727. DOI: https://doi.org/10.3390/ijms231911727

[26] S. A. Ogunkunle, A. Bouzid, J.J. Hinsch, O.J. Allen, J.J. White, S. Bernard, Z. Wu, Y. Zhu & Y. Wang, “Defect engineering of 1T′ MX2 (M = Mo, W and X = S, Se) transition metal dichalcogenide-based electrocatalyst for alkaline hydrogen evolution reaction”, Journal of Physics: Condensed Matter 36 (2024) 145002. https://doi.org/10.1088/1361-648x/ad19a4. DOI: https://doi.org/10.1088/1361-648X/ad19a4

[27] Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, & H. Zhang, “Single-layer semiconducting nanosheets: high-yield preparation and device fabrication”, Angew Chem Int Ed Engl. 50 (2011) 11093. https://doi.org/10.1002/anie.201106004. DOI: https://doi.org/10.1002/anie.201106004

[28] T. Das, S. Chakraborty, R. Ahuja & G. P. Das “TiS2 monolayer as an emerging ultrathin bifunctional catalyst: influence of defects and functionalization”, ChemPhysChem 20 (2019) 608. https://doi.org/10.1002/cphc.201801031. DOI: https://doi.org/10.1002/cphc.201801031

[29] J. K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J.G. Chen, S. Pandelov & U. Stimming, “Trends in the exchange current for hydrogen evolution”, Jornal of Electrochemical Society 152 (2005) J23. https://doi.org/10.1149/1.1856988. DOI: https://doi.org/10.1149/1.1856988

[30] L. Chang, Z. Sun & Y.H. Hu, “1T phase transition metal dichalcogenides for hydrogen evolution reaction”, Electrochem. Energ. Rev. 4 (2021) 194. https://doi.org/10.1007/s41918-020-00087-y. DOI: https://doi.org/10.1007/s41918-020-00087-y

Published

2025-11-15

How to Cite

Role of Van der Waals correction on the catalytic performance of 1T-TiS₂ electrocatalyst. (2025). African Scientific Reports, 4(3), 356. https://doi.org/10.46481/asr.2025.4.3.356

How to Cite

Role of Van der Waals correction on the catalytic performance of 1T-TiS₂ electrocatalyst. (2025). African Scientific Reports, 4(3), 356. https://doi.org/10.46481/asr.2025.4.3.356