Transformative approach in Lassa fever diagnostics: an innovative integrative strategy for early detection and outcome prediction

Authors

  • Denis U. Ashishie
    Department of Computer Science, University of Calabar PMB 1115, Eta 540004, Etta Agbo Rd, Calabar, Nigeria
  • Endurance O. Obi
    Department of Computer Science, University of Calabar PMB 1115, Eta 540004, Etta Agbo Rd, Calabar, Nigeria
  • Osowomuabe Njama-Abang
    Department of Computer Science, University of Calabar PMB 1115, Eta 540004, Etta Agbo Rd, Calabar, Nigeria
  • Ahena I. Bassey
    Department of Computer Science, University of Calabar PMB 1115, Eta 540004, Etta Agbo Rd, Calabar, Nigeria

Keywords:

Lassa fever, Hybrid machine learning, Diagnostic models, Risk prediction

Abstract

Lassa fever remains a critical public health concern in West Africa, with Nigeria facing the highest burden. Timely and accurate diagnosis is essential for reducing mortality and controlling outbreaks, yet existing diagnostic methods are often ineffective due to resource constraints and limited capacities to handle complex datasets. This study develops and evaluates a hybrid machine learning model to improve the early detection and risk prediction of Lassa fever using Nigerian patient datasets. The research employs three robust base models—Random Forest, LightGBM, and XGBoost optimized individually and then integrated into a stacked hybrid model for enhanced prediction accuracy. Model performance is assessed using metrics such as accuracy, precision, recall, F1-score, and AUC-ROC curves. The results demonstrate that the hybrid model outperforms individual machine learning models, achieving significant improvements in precision and recall for the minority class. Feature importance analysis highlights key clinical predictors, such as fever duration and hemorrhagic symptoms, for distinguishing patient outcomes. These findings underscore the potential of hybrid machine learning frameworks in addressing diagnostic challenges for infectious diseases in resource-limited settings. This study presents a scalable approach for data-driven diagnostics, offering meaningful advancements in public health interventions and disease monitoring systems.

Dimensions

[1] W. B. Yahya, Y. Bello & A. AbdulRaheem, “Model fitness and predictive accuracy in linear mixed-effects models with latent cluster”, Journal of the Nigerian Society of Physical Sciences 5 (2023) 1437. https://doi.org/10.46481/jnsps.2023.1437. DOI: https://doi.org/10.46481/jnsps.2023.1437

[2] Z.-H. Zhou, J. Wu & W. Tang, “Ensembling neural networks: many could be better than all”, Artificial Intelligence 137 (2002) 239. https://doi.org/10.1016/S0004-3702(02)00190-X. DOI: https://doi.org/10.1016/S0004-3702(02)00190-X

[3] I. Kononenko, “Machine learning for medical diagnosis: history, state of the art and perspective”, Artificial Intelligence in Medicine 23 (2001) 89. https://doi.org/10.1016/S0933-3657(01)00077-X. DOI: https://doi.org/10.1016/S0933-3657(01)00077-X

[4] T. Chen & C. Guestrin, “XGBoost: A scalable tree boosting system”, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 2016, pp. 785–794. https://doi.org/10.1145/2939672.2939785. DOI: https://doi.org/10.1145/2939672.2939785

[5] J. H. Friedman, “Greedy function approximation: a gradient boosting machine”, The Annals of Statistics 29 (2001) 1189. https://doi.org/10.1214/aos/1013203451. DOI: https://doi.org/10.1214/aos/1013203451

[6] T. Dietterich, “Ensemble methods in machine learning”, Multiple Classifier Systems, Lecture Notes in Computer Science 1857 (2000) 1. https://doi.org/10.1007/3-540-45014-9_1. DOI: https://doi.org/10.1007/3-540-45014-9_1

[7] L. Breiman, “Random forests”, Machine Learning 45 (2001) 5. https://doi.org/10.1023/A:1010933404324. DOI: https://doi.org/10.1023/A:1010933404324

[8] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye & T.-Y. Liu, “LightGBM: a highly efficient gradient boosting decision tree”, Advances in Neural Information Processing Systems 30 (2017) 3146. https://doi.org/10.5555/3294996.3295074.

[9] N. Cristianini & J. Shawe-Taylor, An Introduction to support vector machines and other kernel-based learning methods, Cambridge University Press, Cambridge, United Kingdom, 2000, pp. 1–189. https://doi.org/10.1017/CBO9780511801389. DOI: https://doi.org/10.1017/CBO9780511801389

[10] D. J. Hand & R. J. Till, “A simple generalisation of the area under the ROC curve for multiple class classification problems”, Machine Learning 45 (2001) 171. https://doi.org/10.1023/A:1010920819831. DOI: https://doi.org/10.1023/A:1010920819831

[11] H. He & E. A. Garcia, “Learning from imbalanced data”, IEEE Transactions on Knowledge and Data Engineering 21 (2009) 1263. https://doi.org/10.1109/TKDE.2008.239. DOI: https://doi.org/10.1109/TKDE.2008.239

[12] N. V. Chawla, K.W. Bowyer, L. O. Hall &W. P. Kegelmeyer, “SMOTE: Synthetic minority over-sampling technique”, Journal of Artificial Intelligence Research 16 (2002) 321. https://doi.org/10.1613/jair.953. DOI: https://doi.org/10.1613/jair.953

[13] X.-Y. Liu, J. Wu & Z.-H. Zhou, “Exploratory undersampling for class-imbalance learning”, IEEE Transactions on Systems, Man, and Cybernetics, Part B 39 (2009) 539. https://doi.org/10.1109/TSMCB.2008.2007853. DOI: https://doi.org/10.1109/TSMCB.2008.2007853

[14] Z. Wang, C. Yan & Y. Cho, “Machine learning for medical applications: an overview of ensemble methods”, IEEE Access 7 (2019) 6350. https://doi.org/10.1109/ACCESS.2019.2963279. DOI: https://doi.org/10.1109/ACCESS.2019.2963279

[15] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince & F. Herrera, “A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybridbased approaches”, IEEE Transactions on Systems, Man, and Cybernetics, Part C 42 (2012) 463. https://doi.org/10.1109/TSMCC.2011.2161285. DOI: https://doi.org/10.1109/TSMCC.2011.2161285

[16] Y. Sun, A. K. C.Wong & M. S. Kamel, “Classification of imbalanced data: a review”, International Journal of Pattern Recognition and Artificial Intelligence 23 (2009) 687. https://doi.org/10.1142/S0218001409007326. DOI: https://doi.org/10.1142/S0218001409007326

[17] S. Wang & X. Yao, “Diversity analysis on imbalanced data sets by using ensemble models”, IEEE Symposium on Computational Intelligence and Data Mining (2009) 324. https://doi.org/10.1109/CIDM.2009.4938667. DOI: https://doi.org/10.1109/CIDM.2009.4938667

[18] B. Krawczyk, M. Wo´zniak & G. Schaefer, “Cost-sensitive decision tree ensembles for effective imbalanced classification”, Applied Soft Computing 14 (2014) 554. https://doi.org/10.1016/j.asoc.2013.08.014. DOI: https://doi.org/10.1016/j.asoc.2013.08.014

[19] F. O. Fasina, A. O. Shittu, D. Lazarus, O. T. Tomori, L. Simonsen, C. Viboud & G. Chowell, “Transmission dynamics and control of Ebola virus disease outbreak in Nigeria, July to September 2014”, Eurosurveillance 19 (2014) 20920. https://doi.org/10.2807/1560-7917.ES2014.19.40.20920. DOI: https://doi.org/10.2807/1560-7917.ES2014.19.40.20920

[20] A. L. Blum & P. Langley, “Selection of relevant features and examples in machine learning,” Artificial Intelligence 97 (1997) 245. https://doi.org/10.1016/S0004-3702(97)00063-5. DOI: https://doi.org/10.1016/S0004-3702(97)00063-5

[21] J. Han, M. Kamber & J. Pei, Data Mining: concepts and techniques, Morgan Kaufmann, Burlington, Massachusetts, USA, 2011, pp. 1–744. https://ia800603.us.archive.org/2/items/datamining_201811/DS-book%20u5.pdf.

[22] T. Fawcett, “An introduction to ROC analysis”, Pattern Recognition Letters 27 (2006) 861. https://doi.org/10.1016/j.patrec.2005.10.010 DOI: https://doi.org/10.1016/j.patrec.2005.10.010

[23] J. Demsar, “Statistical comparisons of classifiers over multiple data sets” Journal of Machine Learning Research 7 (2006) 1. https://www.jmlr.org/papers/volume7/demsar06a/demsar06a.pdf.

[24] NCDC, “An update of Lassa fever outbreak in Nigeria”, Ncdc.gov.ng, 2019. https://ncdc.gov.ng/diseases/sitreps/?cat=5&name=An%20update%20of%20Lassa%20fever%20outbreak%20in%20Nigeria.

[25] E. O. Obi, “Development of a hybrid machine learning model for the detection of patients infected with Lassa fever”, 2024. https://deepnote.com/workspace/Obi-aba3a7aa-56c0-4a7f-8a84-2a3f07cb4d01/project/Lassa-034bbfb7-60f4-4f8d-b40e-295e3ceb17a8/notebook/20241127-045451-Notebook-1-2-e8fc3de7aa26493f928d013dcb108e9d?utm_source=share-modal&utm_medium=product-shared-content&utm_campaign=notebook&utm_content=034bbfb7-06f4-4f8d-b40e-295e3ceb17a8.

Published

2025-10-28

How to Cite

Transformative approach in Lassa fever diagnostics: an innovative integrative strategy for early detection and outcome prediction. (2025). African Scientific Reports, 4(3), 338. https://doi.org/10.46481/asr.2025.4.3.338

Issue

Section

MATHEMATICAL SCIENCES SECTION

How to Cite

Transformative approach in Lassa fever diagnostics: an innovative integrative strategy for early detection and outcome prediction. (2025). African Scientific Reports, 4(3), 338. https://doi.org/10.46481/asr.2025.4.3.338

Most read articles by the same author(s)