Atomistic Simulation of the Effect of Temperature on Mechanical Properties of some Nano-Crystalline Metals


  • Isaiah Eze Igwe Department of Physics, Faculty of Physical Science, Federal University Dutisn-Ma, P.M.B. 5001 Dutsin-Ma, Katsina State. Nigeria
  • Yusuf Tajuddeen Batsari Department of Physics, Faculty of Physical Science, Federal University Dutisn-Ma, P.M.B. 5001 Dutsin-Ma, Katsina State, Nigeria


molecular dynamics, tensile deformation, ductility, nanocrystalline metals, plasticity


For materials with high ductility, malleability and conductivity, temperature will have significant impact on the material properties. This is especially true for pure elemental metals which have a wide range of applications due to their ultrahigh strengths. Recently, the study of damage mechanism at the nano- and micro level has attracted a significant interest and research. However, the current understanding of deformation mechanisms in nanocrystalline metals in relation to atomic structure and behavior is insufficient. In this study, atomistic simulation of uniaxial tension at nano-scale was performed at a fixed rate of loading (500 ms^-1) on some nano-crystalline face centered cubic metals (Al, Cu, and Ni), to study the nature of tensile deformation at different temperatures using the embedded-atomic method (EAM) potential function. The simulation results show a rapid increase in the stress up to a maximum value followed by a sharp drop when the nanocrystal fails by ductile dislocation. The drop in the stress-strain curves can be attributed to the rearrangement of atoms to a new or modified crystalline structure. Additional simulations were run to study the effects of temperature on the stress-strain curve of nano-crystals. The result shows that increasing temperature weakens the ductility of these nanomaterials. In this investigation, the strain corresponding to yielding stress is observed to be lower with increasing temperature. Finally, the evolution of crystalline microstructure during the entire tensile process was investigated. The atomistic simulation result of tensile deformation at nanoscale obtained in this study agree with plasticity phenomenon observed in macroscale.


H. Li, K. Chandrashekhara, S. Komaragiri, S. N. Lekakh, & V. L. Richards, “Crack prediction using nonlinear finite element analysis during pattern removal in investment casting process”, Journal of Materials Processing Technology, 214 (2014) 1418.

P. Boutachkov, K. O. Voss, K. Lee, M. S. Song, C. Yi, M. Cappellazzo, W. Kondziołka, A. Liskowicz & M. Cholewa, “An investigation of secondary electron emission from ZnO based nanomaterials for future applications in radiation detectors”, Scientific Reports 11 (2021) 737.

M. H. Wang, S. Y. You, F. N. Wang & Q. Liu, “E ect of dynamic adjustment of diamond tools on nano-cutting behavior of single-crystal silicon”, Applied Physics A 125 (2019) 176.

W. C. Crone, “A Brief Introduction to MEMS and NEMS”, in: W. N. Sharpe (Ed.), Springer Handbook of Experimental Solid Mechanics, Springer US, Boston, MA (2008) 203.

M. S. Bobji, C. S. Ramanujan, J. B. Pethica & B. J. Inkson, “A miniaturized TEM nanoindenter for studying material deformationin situ”, Measurement Science and Technology 17 (2006) 1324.

E. V. Jelenkovi´c & S. To, “Suppression of nanoindentation-induced phase transformation in crystalline silicon implanted with hydrogen”, Electronic Materials Letters 13 (2017) 393.

D. C. Rapaport, “The Art of Molecular Dynamics Simulation”, Cambridge University Press, Cambridge (2004).

T. A. Pham, K. E. Kweon, A. Samanta, V. Lordi & J. E. Pask, “Solvation and Dynamics of Sodium and Potassium in Ethylene Carbonate from ab Initio Molecular Dynamics Simulations”, The Journal of Physical Chemistry C 121 (2017) 21913.

M. A. Pacheco-Blas & L. Vicente, “Molecular dynamics simulation of removal of heavy metals with sodium dodecyl sulfate micelle in water”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 578 (2019) 123613.

H. Eslami, F. Mozaffari & J. Moghadasi, “Molecular dynamics simulation of potassium along the liquid-vapor coexistence curve”, Journal of the Iranian Chemical Society 7 (2010) 308.

D. K. Belashchenko, “Molecular dynamics simulation of the structure and thermodynamic properties of liquid rubidium at pressures of up to 10 GPa and temperatures of up to 3500 K”, Russian Journal of Physical Chemistry A 90 (2016) 1707.

M. Faruq, A. Villesuzanne & G. Shao, “Molecular-dynamics simulations of binary Pd-Si metal alloys: Glass formation, crystallisation and cluster properties”, Journal of Non-Crystalline Solids 487 (2018) 72.

K. Saitoh, K. Kuramitsu, T. Sato, M. Takuma & Y. Takahashi, “Molecular Dynamics Study on Deformation Mechanism of Grain Boundaries in Magnesium Crystal: Based on Coincidence Site Lattice Theory”, Journal of Materials 2018 (2018) 4153464.

S. P. Patil & Y. Heider, “A Review on Brittle Fracture Nanomechanics by All-Atom Simulations”, Nanomaterials (Basel) 9 (2019) 1050.

Y. Zhang, S. Jiang, X. Zhu & Y. Zhao, “Mechanisms of crack propagation in nanoscale single crystal, bicrystal and tricrystal nickels based on molecular dynamics simulation”, Results in Physics 7 (2017) 1722.

P. Heino, H. H¨akkinen & K. Kaski, “Molecular-dynamics study of copper with defects under strain”, Physical Review B 58 (1998) 641.

X. Zhao, C. Lu, A. K. Tieu, L. Pei, L. Zhang, L. Su & L. Zhan, “Deformation mechanisms in nanotwinned copper by molecular dynamics simulation”, Materials Science and Engineering: A 687 (2017) 343.

L. Chang, C. Y. Zhou, L. L. Wen, J. Li & X. H. He, “Molecular dynamics study of strain rate effects on tensile behavior of single crystal titanium nanowire”, Computational Materials Science 128 (2017) 348.

L. Chang, C. Y. Zhou, H.-X. Liu, J. Li & X. H. He, “Orientation and strain rate dependent tensile behavior of single crystal titanium nanowires by molecular dynamics simulations”, Journal of Materials Science & Technology 34 (2018) 864.

R. Komanduri, N. Chandrasekaran & L. M. Raff, “Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel”, International Journal of Mechanical Sciences 43 (2001) 2237.

Y. Rosandi, H.-T. Luu, H. M. Urbassek & N. Gunkelmann, “Molecular dynamics simulations of the mechanical behavior of alumina coated aluminum nanowires under tension and compression”, RSC Advances 10 (2020) 14353.

H. Liang, M. Upmanyu & H. Huang, “Size-dependent elasticity of nanowires: Nonlinear e ects”, Physical Review B 71 (2005) 241403.

L. Yuan, D. Shan & B. Guo, “Molecular dynamics simulation of tensile deformation of nano-single crystal aluminum”, Journal of Materials Processing Technology 184 (2007) 1.

P. T. Li, Y.Q. Yang, Z. Xia, X. Luo, N. Jin, Y. Gao & G. Liu, “Molecular dynamic simulation of nanocrystal formation and tensile deformation of TiAl alloy”, RSC Advances 7 (2017) 48315.

M. S. Daw S. M. Foiles, & M. I. Baskes, “The embedded-atom method: a review of theory and applications”, Materials Science Reports 9 (1993) 251.

M. S. Daw & M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals”, Physical review letters,

(1983) 1285.

M. S. Daw, “Model of metallic cohesion: The embedded-atom method”, Physical Review B, 39 (1989) 7441.

Q. Spreiter & M.Walter, “Classical Molecular Dynamics Simulation with the Velocity Verlet Algorithm at Strong External Magnetic Fields”, Journal of Computational Physics 152 (1999) 102.

H. Gould & J. Tobochnik, “Statistical and Thermal Physics: With Computer Applications”, Princeton University Press (2010).

P. Thompson A, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeye, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott & S. J. Plimpton, “LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales”, Comp. Phys. Comm. 271 (2022) 108171.

A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool”, Modelling and Simulation in Materials Science and Engineering 18 (2010) 015012.

Y. Zhao & Y. Gu, “Deformation mechanisms and plasticity of ultrafine-grained Al under complex stress state revealed by digital image correlation technique”, Nanotechnology Reviews10 (2021) 73.

L. Li & M. Han, “Molecular dynamics simulations on tensile behaviors of single-crystal bcc Fe nanowire: e ects of strain rates and thermal environment”, Applied Physics A 123 (2017) 450.

L. Pastor-Abia, M. J. Caturla, E. SanFabi´an, G. Chiappe & E. Louis, “Abnormal stress drop at the yield point of aluminum nanowires: A molecular dynamics study”, Physical Review B 83 (2011) 165441.



How to Cite

Igwe, I. E., & Batsari, Y. T. . (2022). Atomistic Simulation of the Effect of Temperature on Mechanical Properties of some Nano-Crystalline Metals. African Scientific Reports, 1(2), 95–102.



Original Research