Impacts of land use patterns on soil thermal and physical properties in basement complex and sedimentary terrains of Ogun State, Nigeria
Authors
- Saheed Adekunle Ganiyu Department of Physics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
- Taiye Ayuba Ishola Department of Physics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
- Oluwaseun Tolutope Olurin Department of Physics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
- Biodun Suraj Badmus Department of Physics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
- Mutiu Abolanle Busari Department of Soil Science and Land Management, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
Keywords:
Basement complex area, Land use activities, Sedimentary formation, Soil thermal properties, Thermal conductivityAbstract
Soil thermal properties (STPs) are critical for managing soil thermal regions under different land uses. Therefore, this study focused on measuring field STPs and the physical properties of soils across various land use patterns (football pitch (FP), abattoir site (AS), dumpsite (DS), and cement brick making (CBM) in basement complex (Odeda) and cretaceous sedimentary formation (Sagamu) in Ogun State, Nigeria. The results revealed that the highest mean thermal conductivity values observed in the basement and sedimentary formations were 1.53 and 1.98 W/mK, recorded in DS and FP, respectively. In terms of specific heat capacity (CS), the maximum and minimum mean values of 3.93 and 1.49 MJ/mK were recorded in DS and BM within the basement complex lithology. Additionally, the highest and lowest thermal admittance ( ) values of 3.36 and 1.71 mm2/s, along with soil moisture contents (MC) of 51.08 % and 26.28 %, were observed in FP and BM, respectively, within the basement complex. However, the sedimentary area exhibited the opposite trend. The mean thermal resistivity (TR) values for FP, AS and CBM soils in the sedimentary formation, as well as for DS soil in the basement complex, were within the recommended threshold (90 0C cm/W) for safe telecommunication signals and buried objects. The results revealed that nearly all the soil thermal properties were considerably influenced by lithology and land management practices. The outcomes of this study will assist land users to make best select of suitable land management practices for sustainable agriculture and environmental preservation.
[1] S. A. Ganiyu, M. A. Oladunjoye, O. A. Shobowale, Y. K. Sikiru & L. O. Onipede, “Investigation of thermal and hydraulic properties of sandy-loam soils under diverse land-use systems”, Ife Journal of Science 24 (2022) 277. https://dx.doi.org/10.4314/ijs.v24i2.9.
[2] A. G. Mengistu, L. D. van Rensburg & S. S. N. Mavimbela, “The effect of soil water and temperature on thermal properties of two soils developed from aeolian sands in South Africa”, Catena 158 (2017) 184. http://dx.doi.org/10.1016/j.catena.2017.07.001.
[3] M. A. Oladunjoye, O. A. Sanuade & A. A. Olaojo, “Variability of soil thermal properties of a seasonally cultivated Agricultural Teaching and Research Farm, University of Ibadan, South western Nigeria”, Global Journal of Science Frontier Research Agriculture & Veterinary 13 (2013) 41. https://globaljournals.org/GJSFR_Volume13/6-Variability-of-Soil-Thermal-Properties.pdf.
[4] M. S. Roxy, V. B. Sumithranand & G. Renuka, “Estimation of soil moisture and its effect on soil thermal characteristics at Astronomical Observatory, Thiruvananthapuram, south Kerala”, Journal of Earth System Science 123 (2014) 1793. https://www.ias.ac.in/public/Volumes/jess/123/08/1793-1807.pdf.
[5] X. Tan, W. Chen, H. Tian & J. Cao, “Water flow and heat transport including ice/water phase change in porous media: Numerical simulation and application”, Cold Regions Science and Technology 68 (2011) 74. https://doi.org/10.1016/j.coldregions.2011.04.004.
[6] B. Tong, D. Kool, J. L. Heitma, T. J. Sauer, Z. Gao & R. Horton, “Thermal property values of a central Iowa soil as functions of soil water content and bulk density or of soil air content”, European Journal of Soil Science 71 (2019) 1. https://doi.org/10.1111/ejss.12856.
[7] I. N. Hamdhan & B. G. Clarke, “Determination of thermal conductivity of coarse and fine sand soils”, Proceedings World Geothermal Congress 2010 Bali Indonesia, 2010. [Online]. https://lib.itenas.ac.id/kti/wp-content/uploads/2013/07/2952.pdf.
[8] S. A. Ganiyu, O. A. Shobowale & Y. K. Sikiru, “Investigation of seasonal variations of soil thermal properties (STPs) under different land use patterns”, Jurnal Geocelebes 6 (2022) 152. https://doi.org/10.20956/geocelebes.v6i2.21866.
[9] A. Alrtimi, M. Rouainia & S. Haigh, “Thermal conductivity of a sandy soil”, Applied Thermal Engineering 106 (2016) 551. http://dx.doi.org/10.1016/j.applthermaleng.2016.06.012.
[10] D. Zhu, P. Ciais, G. Krinner, F. Maignan, A. J. Puig & G. Hugelius, “Controls of soil organic matter on soil thermal dynamics in the northern high latitudes”, Nature Communications 10 (2019) 3172. https://doi.org/10.1038/s41467-019-11103-1.
[11] C. S. Blázquez, A. F. Martı́n, P. C. Garcı́a & D. G. Aguilera, “Thermal conductivity characterization of three geological formations by the implementation of geophysical methods”, Geothermics 72 (2018) 101. https://doi.org/10.1016/j.geothermics.2017.11.003.
[12] S. Zaibon, S. H. Anderson, K. S. Veum & S. I. Haruna, “Soil thermal properties affected by topsoil thickness in switchgrass and row crop management systems”, Geoderma 150 (2019) 93. https://doi.org/10.1016/geoderma.2019.05.005.
[13] M. Sindelar, H. Blanco-Canqui, V. L. Jin & R. Ferguson, “Do cover crops and corn residue removal affect soil thermal properties?”, Soil Science Society of America Journal 83 (2019) 448. https://doi.org/10.2136/sssaj2018.06.0239.
[14] B. M. Onwuka, P. C. Oguike & E. A. Adesemuyi, “Variations in soil heat transfer under different land use types in Abia state, Southeastern Nigeria”, Eurasian Journal of Soil Science 10 (2021) 1. https://doi.org/10.18393/ejss.797843.
[15] A. Boukelia, H. Eslami, S. Rosin-Paumier & F. Masrouri, “Effect of temperature and initial state on variation of thermal parameters of fine compacted soils”, European Journal of Environmental & Civil Engineering 23 (2019) 1125. https://doi.org/10.1080/19648189.2017.13441.
[16] B. Mitchell-Fostyk, S. Haruna, K. Downs, “Variability of soil thermal properties along a catena in middle Tennessee, USA”, International Agrophysics 35 (2021) 209. https://doi.org/10.31545/intagr/140079.
[17] O. H. Ologunde, M. O. Kelani, M. K. Biru, A. B. Olayemi & M. R. Nunes, “Land Use and Land Cover Changes: A Case Study in Nigeria”, Land 14 (2025) 389. https://doi.org/10.3390/land14020389.
[18] J. Telo da Gama, “The role of soils in sustainability, climate change, and ecosystem Services: Challenges and Opportunities”, Ecologies 4 (2023) 552. https://doi.org/10.3390/ecologies4030036.
[19] J. Mirkatouli, A. Hosseini & A. Neshat, “Analysis of land use and land cover spatial pattern based on Markov chains modeling”, City, Territory & Architecture 2 (2015) 4. https://doi.org/10.1186/s40410-015-0023-8.
[20] S. A. Ganiyu, O. T. Olurin & O. A. Shobowale, “Assessing the impacts of land use and land abandonment on soil thermal properties: a case study of dumpsite and cement block making site”, Journal of Mining and Geology 57 (2021) 444. https://nmgs-journal.org/journal/details.php?jn=91.
[21] I. P. Adejoh, “Assessment of heavy metal contamination of soil and cassava plants within the vicinity of a cement factory in North Central, Nigeria”, Advanced Applied Science Research 7 (2016) 20. http://www.pelagiaresearchlibrary.com.
[22] A. Jafari, M. Ghaderpoori, B. Kamarehi & H. Abdipour, “Soil pollution evaluation and health risk assessment of heavy metals around Douroud cement factory, Iran”, Environmental Earth Sciences 78 (2019) 250. https://doi.org/10.1007/s12665-019-8220-5.
[23] J. Liu, H. Wang & Y. Zhang, “Soils close to industrial sites tend to have higher load concentrations due to human activities”, Journal of Environmental Quality 49 (2020) 1247. https://doi.org/10.2134/jeq2020.02.0074.
[24] B. Mekonnen, H. Alemayehu & W. Zeine, “Assessment of the effect of solid waste dumpsite on surrounding soil and river water quality in Tepi Town, Southwest Ethiopia”, Journal of Environmental and Public Health 20 (2020) 5157046. https://doi.org/10.1155/2020/5157046.
[25] D. Abiriga, L. S. Vestgardan & H. Klempe, “Groundwater contamination from a municipal landfill: effect of age, landfill closure, and season on groundwater chemistry”, Science of the Total Environment 737 (2020) 140307. https://doi.org/10.1016/j.scitotenv.2020.140307.
[26] E. B. Oluwagbemi, V. N. Enwemiwe, E. O. Ayoola, C. C. Obi, J. U. Okushemiya & H. Ufoegbune, “Physicochemical characteristics of soil and water in Electronic Waste Dump Site, Alaba, Lagos, Nigeria”, African Scientific Reports 2 (2023) 84. https://doi.org/10.46481/asr.2023.2.1.84.
[27] S. A. Ganiyu, O. T. Olurin, S. Y. Makanjuola, A. Okeh, A. O. Salawu & R. A. Lasisi, “Assessing the physical and geotechnical properties of subsoils within an active municipal solid waste dumpsite for secured future urban growth”, African Scientific Reports 3 (2024) 184. https://doi.org/10.4648/asr.2024.3.2.184.
[28] B. S. Badmus, V. C. Ozebo, O. A. Idowu, S. A. Ganiyu & O. T. Olurin, “Physico-chemical properties of soil samples and dumpsite environmental impact on groundwater quality in south western Nigeria”, The African Review of Physics 9 (2014) 103. http://lamp.ictp.it/index.php/aphysrev/article/viewArticle/864.
[29] J. Faitli, T. Magyar, A. Erdélyi & A. Murányi, “Characterization of thermal properties of municipal solid waste landfills”, Waste Management 36 (2015) 213. http://dx.doi.org/10.1016/j.wasman.2014.10.028.
[30] M. Chemeda, K. Kibret & T. Fite, “Influence of different land use types and soil depths on selected soil properties related to soil fertility in Warandhab area, Horo Guduru Wallaga zone, Oromiya, Ethiopia”, International Journal of Environmental Science & Natural Resources 4 (2017) 555634.
[31] V. A. Tellen & B. P. K. Yerima, “Effects of land use change on soil physico-chemical properties in selected areas in the north west region of Cameroon”, Environmental Systems Research 7 (2018) 3. https://doi.org/10.1186/s40068-018-0106-0.
[32] S. A. Ganiyu, “Evaluation of soil hydraulic properties under different non-agricultural land use patterns in a basement complex area using multivariate statistical analysis”, Environmental Monitoring and Assessment 190 (2018) 595. https://doi.org/10.1007/s10661-018-6959-x.
[33] E. A. Dionizio & M. H. Costa, “Influence of land use and land cover on hydraulic and physical soil properties at the Cerrado Agricultural Frontier”, Agriculture 9 (2019). https://doi.org/10.3390/agriculture9010024.
[34] G. B. Tesfahunegn & T. A. Gebru, “Variation in soil properties under different cropping and other land-use systems in Dura Catchment, Northern Ethiopia”, PLoS ONE 15 (2020) e0222476. https://doi.org/10.1371/journal.pone.0222476.
[35] M. Velichenko & T. Arkhangelskaya, “Land-use change impacts on thermal properties of typical chernozems”, Geophysical Research Abstracts 17 (2015) 6568. https://ui.adsabs.harvard.edu/abs/2015EGUGA..17.6568V/abstract.
[36] P. Adhikari, R. P. Udawatta & S. H. Anderson, “Soil thermal properties under prairies, conservation buffers, and corn-soyabean land use systems”, Soil Science Society of America Journal 78 (2014) 1977. https://doi.org/10.2136/sssaj2014.02.0074.
[37] S. I. Haruna, S. H. Anderson, N. V. Mkongolo, T. Reinbott & S. Zaibon, “Soil thermal properties influenced by perennial Biofuel and Cover Crop management”, Soil Science Society of America Journal 81 (2017) 1147. https://doi.org/10.2136/sssaj2016.10.0345.
[38] Y. Shen, N. McLaughlin, X. Zhang, M. Xu & A. Liang, “Effect of tillage and crop residue on soil temperature following planting for a black soil in northeast China”, Scientific Reports 8 (2018) 4500. https://doi.org/10.1038/s41598-018-22822-8.
[39] P. Mielke, K. Bär & I. Sass, “Determining the relationship of thermal conductivity and compressional wave velocity of common rock types as a basis for reservoir characterization”, Journal of Applied Geophysics 140 (2017) 135. http://dx.doi.org/10.1016/j.jappgeo.2017.04.002.
[40] X. Zhu, Z. Gao, T. Chen, W. Wang, C. Lu & Q. Zhang, “Study on the thermal-physical properties and influencing factors of regional surface shallow rock and soil in China”, Frontier Earth Sciences 10 (2022) 864548. https://doi.org/10.3389/feart.2022.864648.
[41] S. S. Oluyamo, O. Famutimi & M. A. Adekoya, “Thermal properties of soil samples from coastal sand landform in Ilaje Local Government Area of Ondo State, Nigeria”, Journal of Advances in Physics 11 (2016) 4137. http://dx.doi.org/10.24297/jap.v11i8.193.
[42] L. Pimienta, N. Klitzsch & C. Clauser, “Comparison of thermal and elastic properties of sandstones: experiments and theoretical insights”, Geothermics 76 (2018) 60. http://dx.doi.org/10.1016/j.geothermics.2018.06.005.
[43] G. C. Ufoegbune, K. I. Lamidi, J. A. Awomeso, A. O. Eruola & O. A. Idowu, “Hydrogeological characteristics and groundwater quality assessment in some selected communities of Abeokuta southwestern Nigeria”, Journal of Environmental Chemistry and Ecotoxicology 1 (2009) 10. https://doi.org/10.5897/JECE.9000034.
[44] B. S. Badmus & O. B. Olatinsu, “Aquifer characteristics and groundwater recharge pattern in a typical basement complex, southwestern Nigeria”, African Journal of Environmental Science & Technology 4 (2010) 328. http://www.academicjournals.org/AJEST.
[45] A. M. Gbadebo & O. D. Bankole, “Analysis of potentially toxic metals in airborne cement dust around Sagamu, southwestern Nigeria”, Journal of Applied Sciences 7 (2007) 35. https://doi.org/10.3923/jas.2007.35.40.
[46] O. Ogunbanjo, A. Onawumi, M. Gbadamosi & O. Ogunlana, “Chemical speciation of some heavy metals and human health risk assessment in soil around two municipal dumpsites in Sagamu, Ogun state, Nigeria”, Chemical Speciation & Bioavailability 28 (2016) 142. https://doi.org/10.1080/09542299.2016.1203267.
[47] A. P. Aizebeokhai, K. D. Oyeyemi & E. S. Joel, “Groundwater potential assessment in a sedimentary terrain, southwestern Nigeria”, Arabian Journal of Geosciences 9 (2016) 496. https://doi.org/10.1007/s12517-016-2524-5.
[48] V. Makinde, S. A. Ganiyu, B. S. Bada, A. O. Salawu, O. A. Ifeyemi & J. O. Odutayo, “Hydrogeophysical exploration and groundwater quality assessment of Obada Oko, Ogun State, Nigeria”, Ife Journal of Science 26 (2024) 737. https://dx.doi.org/10.4314/ijs.v26i3.15.
[49] A. G. Akinse & A. M. Gbadebo, “Geological mapping of Abeokuta metropolis, southwestern Nigeria”, International Journal of Science & Engineering Research 7 (2016) 979. http://www.ijser.org/.
[50] M. O. Oloruntola & G. O. Adeyemi, “Geophysical and hydrochemical evaluation of groundwater potential and character of Abeokuta Area, Southwestern Nigeria”, Journal of Geography and Geology 6 (2014) 162. https://doi.org/10.5539/jgg.v6n3p162.
[51] Z. O. Ojekunle, A. A. Adeyemi, A. M. Taiwo, S. A. Ganiyu & M. A. Balogun, “Assessment of physico-chemical characteristics of groundwater within selected industrial areas in Ogun state, Nigeria”, Environmental Pollutants & Bioavailability 32 (2020) 100. https://doi.org/10.1080/26395940.2020.1780157.
[52] S. A. Ganiyu, O. T. Olurin & M. K. Atoyebi, “Effect of mineral and edible vegetable oils on physico-chemical and hydrological properties of sandy loam soils in parts of Nigerian basement complex”, Arabian Journal of Geosciences 14 (2021) 2702. https://doi.org/10.1007/s12517-021-09084-x.
[53] NGSA, “Geological and Mineral Resources Map of Ogun State, Nigeria”, Nigerian Geological Survey Agency, Abuja, Nigeria, 2016. https://www.google.com/search?client=firefox-e&q=Geological+and+Mineral+Resources+Map+of+Ogun+State%2C+Nigeria.
[54] C. T. Oloyede, F. B. Akande, O. K. Olaniyi & O. O. Oluwatoyin, “Thermal properties of soursop seeds and kernels”, Research in Agricultural Engineering 63 (2017) 79. https://doi.org/10.17221/22/2016-RAE.
[55] N. P. López-Acosta, A. I. Zaragoza-Cardiel & D. F. Barba-Galdámez, “Determination of thermal conductivity properties of coastal soils for GSHPs and energy geostructure applications in Mexico”, Energies 14 (2021) 5479. https://doi.org/10.3390/en14175479.
[56] R. B. Grossman & T. G. Reinsch, “Bulk density and linear extensibility”: Core method, in Method of Soil Analysis, Part 4, Physical method, J. H. Dane and G. C. Topp (eds), 2002, pp. 208-228, SSSA, Inc, Madison, WI. https://doi.org/10.2136/sssabookser5.4.c9.
[57] D. Hillel, Introduction to Environmental Soil Physics, Elsevier Academic Press, San Diego, USA, 2004. https://www.sciencedirect.com/book/9780123486554/introduction-to-environmental-soil-physics.
[58] G. W. Gee & D. Or, “Particle-size analysis”, in Method of soil analysis, part 4, Physical Method, J. H. Dane and C. C. Topp (Eds), SSSA, lnc. Madison, WI, 2002, pp. 255-294. https://doi.org/10.2136/sssabookser5.4.c9.
[59] W. D. Reynolds & D. E. Elrick, “Constant head soil core (tank) method”, In: J. H. Dane and G. C. Topp (Eds), Methods of soil Analysis, Part 4, Physical methods. SSSA Book Series 5, Soil Science Society of America, 2002. [Online]. https://www.wiley.com/en-us/Methods+of+Soil+Analysis%2C+Part+4%3A+Physical+Methods-p-9780891188933.
[60] ASTM D4959-07, “Standard test method for determination of water (moisture) content of soil by direct heating”, Annual Book of ASTM standards (2007). American Society for Testing materials, New York. https://cdn.standards.iteh.ai/samples/52915/6bc7679b5a5347fdb6aa20aa39dc851c/ASTM-D4959-07.pdf.
[61] P. O. Elias & A. S. Gbadegesin, “Comparative study of soils derived from sedimentary and basement rock formations of the Lower Ogun River floodplain, South Western Nigeria”, Journal of Geography and Geology 4 (2012) 71. https://doi.org/10.5539/jgg.v4n2p71.
[62] M. E. Nsor & I. J. Ibanga, “Influence of parent materials on the physic-chemical properties of soils in Central Cross River State, Nigeria”, Global Journal of Agricultural Sciences 7 (2004) 183. https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.ajol.info/index.php/gjass/article/view/2383/31524.
[63] I. Håkansson & J. Lipiec, “A review of the usefulness of relative bulk density values in studies of soil structure and compaction”, Soil and Tillage Research 53 (2000) 71. https://doi.org/10.1016/S0167-1987(99)00095-1.
[64] N. Rayne & L. Aula, “Livestock manure and the impacts on soil health: a review”, Soil Systems 4 (2020) 64. https://doi.org/10.3390/soilsystems4040064.
[65] Y. Bi, H. Zou & C. Zhu, “Dynamic monitoring of soil bulk density and infiltration rate during coal mining in sandy lands with different vegetation”, International Journal of Coal Science & Technology 1 (2014) 198. https://doi.org/10.1007/s40789-014-0025-2.
[66] B. Usowicz & J. Lipiec, “The effect of exogenous organic matter on the thermal properties of tilled soils in Poland and the Czech Republic”, Journal of Soils and Sediments 20 (2020) 365. https://doi.org/10.1007/s11368-019-02388-2.
[67] K. Ankenbauer & S. P. Loheide, “The effects of soil organic matter on soil water retention and plant water use in a meadow of the Sierra Nevada, C.A”, Hydrological Processes 31 (2016) 891. https://doi.org/10.1002/hyp.11070.
[68] M. Kutı́lek & L. Jendele, “The structural porosity in soil hydraulic functions - a review”, Soil & Water Resources 3 (2008) S7. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20093255754.
[69] A. K. Indoria, K. L. Sharma & K. S. Reddy, “Hydraulic properties of soil under warming climate”, in Climate Change and Soil Interactions, 2020, pp. 473. https://doi.org/10.1016/B978-0-12-818032-7.00018-7.
[70] U. Buczko & C. Hüttl, “Tillage effects on hydraulic properties and macro porosity in silty and sandy soils”, Soil Science Society of America Journal 70 (2006) 1998. https://doi.org/10.2136/sssaj2006.0046.
[71] K. H. Chang, J. E. Powers & E. Lyons, “Water restriction impact on surface hardness and soil volumetric water content on recreational sports fields”, International Turfgrass Society Research Journal 13 (2017) 614. https://doi.org/10.2134/itsrj2016.09.0832.
[72] A. O. Adekiya, G. A. Ajayi, K. A. Adegbite, F. L. Imhanze & A. L. Ibaba, “Mineralogical compositions of soils under three geological formations in some parts of Ogun State, Nigeria and their agricultural potentials”, Scientific Reports 14 (2024) 6905. https://doi.org/10.1038/s41598-024-57397-0.
[73] S. Supandi, Z. Zakaria, E. Sukiyah & A. Sudradjat, “The influence of Kaolinite-Illite toward mechanical properties of Claystone”, Open Geosciences 11 (2019) 440. https://doi.org/10.1515/geo-2019-0035.
[74] B. Marschner & A. D. Noble, “Chemical and biological processes leading to neutralization of acidity in soil incubated with litter materials”, Soil Biology & Biochemistry 32 (2000) 805. https://doi.org/10.1016/s0038-0717(99)00209-6.
[75] J. A. O’Donnell, V. E. Romanovsky, J. W. Harden & A. D. McGuire, “The effect of moisture content on the thermal conductivity of Moss and organic soil Horizons from Black Spruce ecosystems in interior Alaska”, Soil Science 174 (2009) 646. https://doi.org/10.1097/SS.0b013e3181c4a7f8.
[76] C. Poeplau, “Grassland soil organic carbon stocks along management intensity and warming gradients”, Grass and Forage Science 76 (2021) 186. https://doi.org/10.1111/gfs.12537.
[77] G. S. Campbell & K. L. Bristow, “Underground Power Cable Installation: Soil Thermal Resistivity”, Tech. Rep. Decagon Devices, 2007. [Online]. http://www.decagon.com/.
[78] O. B. Andersland & B. Ladanyi, “Physical and thermal properties, an introduction to frozen ground engineering”, Chapman and Hall, New York, NY, 1994, pp. 1-62. https://link.springer.com/book/10.1007/978-1-4757-2290-1.
[79] E. I. Ekwue, R. J. Stone, E. J. Peters & S. Rampersad, “Thermal conductivities of some common soils in Trinidad as affected by density, water and peat content”, The West Indian Journal of Engineering 38 (2015) 61. http://sta.uwi.edu/eng/wije/.
[80] A. Ghader, “Clay-loam soil thermal properties survey”, International Journal of Advanced and Applied Sciences 1 (2014) 31. http://www.science-gate.com/IJAAS.html.
[81] G. S. Campbell & K. L. Bristow, “The effect of soil thermal resistivity (RHO) on underground power cable installations”, Application Note (2014): Thermal Decagon Devices. [Online]. https://www.labcell.com/media/127261/underground%20power%20cable%20installations%20soil%20thermal%20resistivity.pdf.
[82] L. M. Nocko, K. Botelho, J. W. F. Morris, R. Gupta & J. S. McCartney, “Thermal conductivity of municipal solid waste from in situ heat extraction tests”, Journal of Geotechnics and Geoenvironment Engineering 146 (2020) 04020077. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002325.
[83] D. Ramakrishnan, R. Bharti, M. Nithya, K. N. Kusuma & K. D. Singh, “Measurement of thermal properties of select intact and weathered granulites and their relationship to rock properties”, Geophysics 77 (2012) D63. https://doi.org/10.1190/GEO2011-0225-1.
[84] Y. Xue & J. Shukla, “The influence of land surface properties on Sahel climate”, Part I: Desertification. Journal of Climate 6 (1993) 2232. https://www.jstor.org/stable/26198609.
[85] G. N. Chima, M. A. Ijeoma, M. O. Nwagbara & V. O. Nwaugo, “Sensitivity of vegetation to decadal variations in temperature and rainfall over northern Nigeria”, Journal of Soil Science and Environmental Management 2 (2011) 228. http://www.academicjournals.org/JSSEM.
[86] M. Aminzadeh, D. Or, B. Stevens, A. AghaKouchak & N. Shokri, “Upper bounds of maximum land surface temperatures in a warming climate and limits to plant growth”, Earth’s Future 11 (2023) e2023EF003755. https://doi.org/10.1029/2023EF003755.
[87] T. L. Brandon & J. K. Mitchell, “Factors influencing thermal resistivity of sands”, Journal of Geotechnical Engineering 115 (1989) 1683. http://worldcat.org/issn/07339410.
[88] H. Y. Madukwe & R. A. Obasi, “Geochemistry, classification and maturity of the sandstone facies of the Abeokuta formation, south-western Nigeria”, European Journal of Basic & Applied Sciences 3 (2016) 39. https://www.idpublications.org/wp-content/uploads/2016/03/Full-Paper.pdf.
[89] J. L. Hanson, Y. Nazli, M. T. Onnen, W. L. Liu, N. K. Oettle & J. A. Marinos, “Development of numerical model for predicting heat generation and temperatures in MSW landfills”, Waste Management 33 (2013) 1993. https://doi.org/10.1016/j.wasman.2013.04.003.
[90] I. J. A. Callejas, L. C. Durante & A. S. Oliveira, “Thermal resistance and conductivity of recycled construction and demolition waste (RCDW) concrete blocks”, REM International Engineering Journal 70 (2017) 167. https://doi.org/10.1590/0370-44672015700048.
[91] N. C. Balaji, K. I. Praseeda, M. Mani & B. V. Venkatarama Reddy, “Influence of varying mix proportions on thermal performance of the soil-cement blocks”, Proceedings of BSA Conference 2015: Second Conference of IBPSA-Italy, 2015 pp. 67. [Online]. https://publications.ibpsa.org/conference/paper/?id=bsa2015 9788860460745 10.
[92] N. Ashraf, M. Nasir, W. Al-Kutti & F. A. Al-Maziad, “Assessment of thermal and energy performance of masonry blocks prepared with date palm ash”, Materials for Renewable and Sustainable Energy 9 (2020). https://doi.org/10.1007/s40243-020-00178-2.
[93] T. S. Yun, Y. J. Jeong, T.-S. Han & K.-S. Youm, “Evaluation of thermal conductivity for thermally insulated concretes”, Energy and Buildings 61 (2013) 125. https://doi.org/10.1016/j.enbuild.2013.01.043.
[94] M. A. Oladunjoye & O. A. Sanuade, “In situ determination of thermal resistivity of soil: case study of Olorunsogo Power Plants, south western Nigeria”, ISRN Civil Engineering 4 (2012) 591450. https://doi.org/10.5402/2012/591450.
[95] B. Tang, C. Zhu, M. Xu, T. Chen & S. Hu, “Thermal conductivity of sedimentary rocks in the Sichuan basin, southwest China”, Energy Exploration & Exploitation 37 (2018) 691. https://doi.org/10.1177/0144598718804902.

Published
How to Cite
Issue
Section
Copyright (c) 2025 Saheed Adekunle Ganiyu, Taiye Ayuba Ishola, Oluwaseun Tolutope Olurin, Biodun Suraj Badmus, Mutiu Abolanle Busari

This work is licensed under a Creative Commons Attribution 4.0 International License.