Effects of precursors composition on characteristics of organic-inorganic Methyl Ammonium Lead Trihalide Perovskite-based thin films
DOI:
https://doi.org/10.46481/asr.2025.4.1.263Keywords:
Mixed halide perovskites, organo-metallic perovskites, energy bandgaps, crystallites, morphological properties, mixed compositionAbstract
Precursors compositional engineering is considered as one of the viable methods of manipulating the characteristics of the mixed halide perovskites. In this research, methyl ammonium lead triiodide perovskites (CH3NH3PbI3) was synthesized through solution-based processing and deposited on ITO glass substrates using spin coating method. Additionally, the effects of mixed composition of precursors on the deposited films were evaluated by partial replacement of iodine (I) anion with bromine (Br) on CH3NH3Pb(I1−xBrx)3 perovskite with Br compositions for x = 0.33 and x = 0.66. The deposited films were characterized using X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) Spectrometry, Ultraviolet-visible Spectrophotometry, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Solar Simulator to study the structural, optical, morphological and optoelectronic properties of the films. The average crystallites of ∼7.94, ∼7.70 and ∼7.62 nm were calculated for CH3NH3PbI3, methyl ammonium lead diiodide bromide (CH3NH3PbI2Br) and methyl ammonium lead iodide dibromide (CH3NH3PbIBr2) respectively. In addition, the energy bandgaps of 1.63 eV, 1.91 eV and 1.94 eV were extrapolated for CH3NH3PbI3, CH3NH3PbI2Br and CH3NH3PbBr2I respectively. The results from J-V curves show the Jsc values of 9.9, 9.2 and 8.6 mAcm−2, FF values of 67.00, 58.20 and 54.2%, Voc values of 0.55, 0.54 and 0.52, and PCE values of 3.50, 3.33 and 3.00% were calculated for CH3NH3PbI3, CH3NH3PbI2Br and CH3NH3PbBr2I, respectively. The results show that partial replacement of I anion with Br on CH3NH3Pb(I1−xBrx)3 perovskite with Br compositions for x = 0.33 and x = 0.66 did not improve the functionality of the methyl ammonium lead triiodide perovskite material.
Downloads
References
[1] Q. Wang, Q. Dang, T. Li, A. Gruvaman & J. Hasung, “Thin insulating tunneling contact for efficient and water resistant perovskite solar cells”, Ad. Mater. 28 (2024) 6734. https://doi.org/10.1002/adma.201600969.
[2] T. Miyasaka, T. Singh & M. Ikegami, “Ambient fabrication of 126μm thick complete perovskite photovoltaic device for high flexibility and performance”, ACS Applied Energy Materials 1 (2018) 6741. https://doi.org/10.1021/acsaem.8b01623.
[3] A. C. Nkele, U. Nwanko, A. Alshoaibiu & F. I. Ezema, “One step spin coating of methylammonium lead iodide on SILAR-deposited tin oxide (SnO2) for effective electron transport”, Results in Optics 13 (2023) 100521. https://doi.org/10.1016/j.rio.2023.100521.
[4] N. G. Park, “Perovskite solar cells: an emerging photovoltaic technology”, Mater. Today 18 (2015) 65. https://doi.org/10.1016/j.mattod.2014.07.007.
[5] Z. L. Zhao, N. L. Tran, Y. L. Lin, S. H. Silver, R. A. Kerner, N. Yao, A. Kahn, G. D. Scholes & B. P. Rand, “Mixed-halide perovskites with stabilized bandgaps”, Nano Lett. 17 (2017) 6863. https://doi.org/10.1021/acs.nanolett.7b03179.
[6] S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, G. Gigli, F. De Angelis & R. Mosca, “MAPbI3−xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties”, Chem. Mater. 25 (2013) 4613. https://doi.org/10.1021/cm402919x.
[7] D. Cui, Z. Yang, X. Ren, Y. Liu, Q. Wei, H. Fan, J. Zeng & S. Liu, “Color-tuned perovskite films prepared for efficient solar cells applications”, J. Phys. Chem. 120 (2016) 42. https://doi.org/10.1021/acs.jpcc.5b09393.
[8] J. H. Peter, C. Arthur, W. J. Eurig & P. K. Christopher, “Metal oxide oxidation catalyst as scaffold for perovskite solar cells”, Materials (Basel) 13 (2020) 949. https://doi.org/10.3390/ma13040949.
[9] M. Islam, K. Yuyama, K. Takahashi, T. Nakamura, K. Konishi & V. Biju, “Mixed halide perovskite synthesized by chemical reaction and crystal nucleation under optical potential”, NPG Asia Materials 11 (2019) 31. https://doi.org/10.1038/s41427-019-0131-0.
[10] K. Aitola, K. Domanski, J. P. Correa-Baena, K. Sveinbjornsson, M. Saliba, A. Abate, M. Gratzel, E. Kauppinon, E. M. J. Johansson, W. Tress W, A. Hagfeldt & G. Boschloo, “High temperature-stable perovskite solar cell based on low-cost carbon nanotubehole contact”, Adv. Mater. 17 (2019) 1606398 https://doi.org/10.1002/adma.201606398.
[11] S. Amole, O. Adedokun, O. Akinrinola, M. K. Awodele, F. A. Ojeniyi, O. A. Oyekanmi & A. O. Awodugba, “Improved performance efficiency of manganese dioxide nanoparticles passivated perovskite solar cells”, Journal of Material Science: Materials in Electronics 36 (2025) 38. https://doi.org/10.1007/s10854-024-14104-z.
[12] M. Hu, C. Bi, Y. Yuan, Y. Bai & J. Huang, “Stabilized wide bandgap MAPbBrxI3−x perovskite by enhanced grain size and improved crystallinity”, Adv. Sci. 3 (2015) 1500301. https://doi.org/10.1002/advs.201500301.
[13] R. D. Chavan, D. Prochowicz, B. Bo´nczak, M. M. Tavakoli, P. Yadav, M. Fiałkowski & C. K. Hong, “Gold nanoparticlesfunctionalized with fullerene derivative as an effective interface layer for improving the efficiency and stability of planar perovskite solar cells”, Adv. Mater. Interfaces. 7 (2020) 2001144. https://doi.org/10.1002/admi.202001144.
[14] D. Cui, Z. Yang, D. Yang, X. Ren, Y. Liu, Q. Wei, H. Fan, J. Zeng & S. Liu, “Colored- tuned perovskite films prepared for efficient solar cells”, Applications J. Phys. Chem. 120 (2016) 42. http://doi.org/10.1021/acsjpcc.5b09393.
[15] A. C. Nkele, A. C. Nwaya, N. M. Shainde, S. Ezugwu, M. Maaza, J. S. Shaiku & F. I. Ezema, “The use of nickel oxide as a hole transport material in perovskite solar cells centrifugation: achieving a high performance and stable device”, International Journal of Energy Research 44 (2020) 9839. https://doi.org/10.1002/er5563.
[16] M. Ipsita, S. Mangal, S. Jana & P. Singh, “Post annealing effect of perovskite (CH3NH3PbI3) thin film for solar cell application”, 2369 (2021) 020046. https://doi.org/10.1063/5.0061270.
[17] W. Ke, D. Zhao, A. Cimaroli, C. Grice, P. Qin, Q. Liu, L. Xiong, Y. Yan & G. Fang, “Effect of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells”, Journal of Materials Chemistry 3 (2015) 24163. https://doi.org/10.1039/C5TA06574G.
[18] S. Amole, O. Adedokun, O. Akinrinola, O. A. Oyekanmi, F. A Ojeniyi, A. K. Dauda & A. O. Awodugba, “Influence of post thermal treatment on characteristics of polycrystalline hybrid perovskite nanoparticle thin films”, Sustainable Energy Research 11 (2024) 30. https://doi.org/10.1186//540807-24-00124-0.
[19] S. Amole, M. Awodele, O. Adedokun, M. Jain & A. O. Awodugba, “Sol-gel spin coating synthesis of TiO2 nanostructure and its optical characterization”, Journal of Material Science and Chemical Engineering 7 (2019) 23. http://doi.org/10.4236/msce2019.76003.
[20] A. C. Nkele, A. C. Nwanya, N. M. Shinde, S. Ezugwu, M. Maaza, J. S. Shaiku & F. I. Ezema, “The use of nickel oxide as a hole transport material in perovskite solar cell centrifugation: achieving a high performance and stable device”, International Journal of Energy Research 44 (2020) 9839. https://doi.org/10.1002/er.5563.
[21] G. Tumen-Ulzii, C. Qui, P. Leyden, P. Wang, M. Auffray, T. Fujihara, T. Matsushima, J. W. Lee, S. J. Lee, Y. Yang & C. Aucachi, “Detrimental effect of unreacted PbI2 on long term stability of perovskite solar cells”, Ad. Mater. 32 (2020) 1905035. https://doi.org/10.1002/adma.201905035.
[22] H. Mehdi, A. Ahamdi, R. Hannachi & A. Bouazizi, “MAPbBr3 perovskite solar cells via a two-step deposition process”, RSC Adv. 9 (2019) 12906. https://doi.org/10.1039/c9ra02036e.
[23] S. Zhou, “Rapid separation and purification of lead halide perovskite quantum dots through differential in nonpolar solvent”, RSC Adv. 11 (2021) 28410. https://doi.org/10.1039/d1ra04578d.
[24] M. Otonicar, S. D. Skapin, B. Jancar, R. Ubic & D. Suvorov, “Analysis of the phase transition and the domain structure in K0.5Bi0.5TiO3 perovskite ceramics by in situ XRD and TEM”, J. Am. Ceram. Soc. 93 (2010) 4168. https://doi.org/10.1111/j.1551-2916.2010.04013.x.
[25] Y. Zhou, H. Sternlicht & N. P. Padture, “Transmission electron microscopy of halide perovskite materials and devices”, Joule 3 (2019) 641. https://doi.org/10.1016/j.joule.2018.12.011.

Additional Files
Published
License
Copyright (c) 2025 Simeon Amole, Oluwaseun Adedokun, Olusola Akinrinola, Olumuyiwa Aderemi Oyekanmi, Festus Akintunde Ojeniyi, Adekunle Kazeem Dauda, Ayodeji Oladiran Awodugba

This work is licensed under a Creative Commons Attribution 4.0 International License.