Physicochemical analysis and dissolution kinetics of Itakpe iron ore in acid, base and aqueous media

Authors

  • Anthony Ugbedeojo Atumeyi Department of Chemistry, Joseph Sarwuan Tarka University Makurdi, Nigeria; Department of Chemistry, Federal University Lokoja, Nigeria
  • A. U. Itodo Department of Industrial Chemistry, Joseph Sarwuan Tarka University Makurdi, Nigeria; Department of Chemistry, Confluence University of Science and Technology, Osara, Nigeria
  • R. Sha'Ato Department of Chemistry, Joseph Sarwuan Tarka University Makurdi, Nigeria
  • R. A. Wuana Department of Chemistry, Joseph Sarwuan Tarka University Makurdi, Nigeria

Keywords:

Dissolution, Environment, Iron ore, Kinetics, Physicochemical

Abstract

This work examines the physicochemical properties and dissolution kinetics of Itakpe iron ore, Nigeria, to provide insight into its industrial and environmental applications. The iron ore had a bulk density of 4.22 g/cm3, an apparent density of 3.33 g/cm3, and a pH of 8.3, hence showing potential in adsorption and environmental remediation. Conductivity of 138.7 μS/cm and specific surface area of 146.81 m2/g showed potential in catalytic and adsorptive applications. The dissolution rates were significantly higher in acidic media, with a maximum weight loss of 5.65% at 360 minutes compared to 4.38% in basic media and 0.45% in neutral conditions. The zero-order kinetic model, R2 = 0.8819, showed that the dissolution process was surface-controlled in acidic media, while the Higuchi model, R2 = 0.8797, confirmed dissolution driven by diffusion. These findings emphasize the need to apply zero-order and Higuchi models in the dissolution kinetics of Itakpe iron ore. This work presents a clear quantitative comparison across media that was not developed earlier. These results support the optimized utilization of Itakpe iron ore in steel production and environmental remediation, hence indicating compatibility with various chemical conditions and that sustainable mining will help reduce harmful environmental impacts.

Dimensions

[1] Nigerian Geological Survey Agency, “Nigeria’s iron ore reserves”, 2020. https://ngsa.gov.ng/wp-content/uploads/2020/06/Iron-Ore.pdf.

[2] O. A. Adekola, “Mineralogy of iron ores in Nigeria”, Journal of Mining and Geology 56 (2020) 151. https://nmgs-journal.org/journal/details.php?jn=9.

[3] K. A. Alabi, “Iron ore deposits in Nigeria: an overview”, African Journal of Science, Technology, Innovation and Development 12 (2020) 433. http://dx.doi.org/10.1080/20421338.2019.1624008.

[4] A. R. Adeshina & F. A. Olaniyi, “Geochemical evaluation of Itakpe iron ore mine tailings, Itakpe, Nigeria”, Journal of Research in Environmental and Earth Sciences 10 (2024) 55. https://dx.doi.org/10.35629/2532-10085571.

[5] J. O. Oke, A. O. Akande & M. I. Aremu, “Exploration and exploitation of iron ore resources in Nigeria”, Nigerian Journal of Mining and Geology 56 (2020) 23. https://nmgs-journal.org/journal/details.php?jn=64.

[6] F. B. Fatoye, “Geology and mineral resources of Kogi State, Nigeria”, International Journal of Multidisciplinary Sciences and Engineering 9 (2018) 7. https://www.researchgate.net/publication/376263250.

[7] T. O. I. Olatunji, “Mineralogical variations in iron ores”, Journal of Environmental and Earth Sciences 12 (2020) 52. http://dx.doi.org/10.1016/j.jseaes.2020.104554.

[8] S. Akande, E. O. Ajaka, O. O. Alabi & T. A. Olatunji, “Effects of varied process parameters on froth flotation efficiency: a case study of Itakpe iron ore”, Nigerian Journal of Technology (NIJOTECH) 39 (2020) 807. https://dx.doi.org/10.4314/njt.v39i3.21.

[9] A. A. Arowolo, “Hematite-Magnetite intergrowths in Nigerian iron ores”, Minerals Engineering 139 (2020) 105. http://dx.doi.org/10.1016/j.mineng.2019.105865.

[10] B. S. Choi, J. H. Lee & S. H. Kim, “Steelmaking from iron ores: a review”, Journal of Cleaner Production 235 (2019) 275. http://dx.doi.org/10.1016/j.jclepro.2019.06.029.

[11] A. A. Tella & N. D. Danjibo, “The environmental impact of mining activities in the local community: a structural equation modelling approach”, International Journal of Social Work 11 (2024) 44. https://dx.doi.org/10.5296/ijsw.v11i1.21747.

[12] G. Onyedika, C. Nwoko, A. Oguarah & M. Ogwuegbu, “Comparative kinetics of iron ore dissolution in aqueous HCl-HNO3 system”, Journal of Minerals and Materials Characterization and Engineering 1 (2013) 153. http://dx.doi.org/10.4236/jmmce.2013.14026.

[13] C. A. T. Wong, R. A. Hamzah & L. H. Tan, “Leaching of toxic elements from iron mining”, Environmental Pollution 247 (2019) 1025. http://dx.doi.org/10.1016/j.envpol.2018.12.043.

[14] T. A. N. Baker, J. K. Smith & A. L. Martinez, “Acid mine drainage: environmental risks”, Journal of Environmental Quality 48 (2019) 793. http://dx.doi.org/10.2134/jeq2018.09.0330.

[15] S. D. B. Ali, M. A. Khan & N. K. Jha, “Sustainable mining practices”, Resources Policy 61 (2019) 178. http://dx.doi.org/10.1016/j.resourpol.2018.11.001.

[16] A. A. Temuujin, M. M. Ulziibayar & H. P. Jin, “Factors affecting mineral dissolution rates”, Geochimica et Cosmochimica Acta 242 (2018) 232. http://dx.doi.org/10.1016/j.gca.2018.08.015.

[17] Y. Barakat, Y. -J. Cui, N. Mokni, P. Delage & F. Bernier, ‘Effects of pH and exposure time to alkaline solutions on the mineralogy of the Opalinus clay from the lower sandy facies of Mont Terri site”, Engineering Geology 306 (2022) 106766. https://dx.doi.org/10.1016/j.enggeo.2022.106766.

[18] G. Onyedika, C. Ikpe & A. Nwoko, “Comparative kinetics of iron ore dissolution in aqueous HCl-HNO3 System”, Journal of Minerals and Materials Characterization and Engineering 1 (2013) 153. https://dx.doi.org/10.4236/jmmce.2013.14026.

[19] A. O. Oke, S. A. Oni & B. O. Nwankwo, “Modeling of dissolution kinetics of iron ore”, Journal of Chemical Engineering and Applications 10 (2019) 39. https://www.researchgate.net/publication/335678901 Modeling of Dissolution Kinetics of Iron Ore.

[20] A. A. Arowolo, “Toxicity of mining activities on agricultural practices”, Journal of Environmental Management 237 (2019) 301. http://dx.doi.org/10.1016/j.jenvman.2019.02.097.

[21] P. H. Statham, L. J. F. Kelsey & R. M. Hinton, “Environmental evolution and mineral dissolution”, Earth and Planetary Science Letters 470 (2017) 158. http://dx.doi.org/10.1016/j.epsl.2017.04.033.

[22] J. Cama, V. Metz & J. Ganor, “The effect of pH and temperature on kaolinite dissolution rate under acidic conditions”, Geochimica et Cosmochimica Acta 66 (2002) 3913. https://dx.doi.org/10.1016/S0016-7037(02)00966-3.

[23] K. I. Ayinla, A. A. Baba, S. Girigisu, O. S. Bamigboye, B. C. Tripathy, A. S. Ibrahim & S. O. Azeez, “Acidic leaching of iron from kaoje goethite ore by hydrochloric acid: kinetics modelling”, Nigerian Journal of Technology 39 (2020) 800. http://dx.doi.org/10.4314/njt.v39i3.29.

[24] R. O. Ajemba & O. D. Onukwuli, “Kinetic model for Ukpor clay dissolution in hydrochloric acid solution”, Journal of Emerging Trends in Engineering and Applied Sciences 3 (2012) 448. https://hdl.handle.net/10520/EJC137036.

[25] A. U. Itodo, I S. Eneji, B. O. Mnengan & M. A. Tseen, “Chemical characterization and leaching kinetics of metals from iron ores”, Academic Journal of Chemistry 4 (2019) 69. http://dx.doi.org/10.32861/ajc.49.69.80.

[26] A. U. Itodo, F.W. Abdulrahman, L. G. Hassan, S. A. Maigandi & H. U. Itodo, “Physicochemical parameters of adsorbents from locally sorted H3PO4 and ZnCl2 modified agricultural wastes”, New York Science Journal 3 (2010) 17. https://www.researchgate.net/publication/204581247.

[27] A. O. Dada, A. P. Olalekan, A. M. Olatunya & O. Dada, “Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2? onto phosphoric acid modified rice husk”, Journal of Applied Chemistry 3 (2012) 38. http://dx.doi.org/10.9790/5736-0313845.

[28] K. Ray E. Lawrence, N. Hein & R. Hilary, “Dissolution kinetics of South African coal fly ash and the development of a semi-empirical model to predict dissolution”, Chemical Industry and Chemical Engineering Quarterly 21 (2015) 319. http://dx.doi.org/10.2298/CICEQ140423032K.

[29] L. Hussain, D. Ashwini & D. Shirish, “Kinetic modeling and dissolution profiles comparison: an overview”, International Journal of Pharmaceutical and Biological Science 4 (2013) 728. https://www.ijpbs.net/details.php?article=2021.

[30] S. A. Chime, G. C. Onunkwo & I. I. Onyishi, “Kinetics and mechanisms of drug release from swellable and non swellable matrices: a review”, Research Journal of Pharmaceutical, Biological and Chemical Sciences 4 (2013) 97. https://www.researchgate.net/publication/286596213.

[31] K. O. Boadu, O. F. Joel, D. K. Essumang & B. O. Evbuomwan, “Comparative studies of the physicochemical properties and heavy metals adsorption capacity of chemical activated carbon from palm kernel, coconut and groundnut shells”, Journal of Applied Science Environment Management 22 (2018) 1833. http://dx.doi.org/10.4314/jasem.v22i12.15.

[32] A. U. Itodo, L. Egbegbedia, I. S. Eneji & A. Asan, “Iron ore deposit and its tailing impact on the toxic metal level of neighboring agricultural soils”, Asian Journal of Environment and Ecology 2 (2017) 1. https://doi.org/10.9734/AJEE/2017/32900.

[33] A. A. Baba, F. A. Adekola & A. O. Folashade, “Quantitative leaching of a Nigerian iron ore in hydrochloric acid”, Journal of Applied Science and Environmental Management 9 (2005) 15. http://dx.doi.org/10.4314/jasem.v9i3.17362.

[34] R. H. Khuluk, R. Ali, B. Buhani & S. Suharso, “Removal of methylene blue by adsorption onto activated carbon from coconut shell (Cocous Nucifera L.)”, Indonesian Journal of Science and Technology 4 (2019) 229. https://ejournal.upi.edu/index.php/ijost/article/view/18179.

[35] A. Ghosh, A. Nanda&S. Ranjan, “Acidic and basic dissolution of iron ore: effects on surface morphology and kinetics”, Minerals Engineering 50 (2013) 43. http://dx.doi.org/10.1016/j.mineng.2013.06.007.

[36] H. Li, Y. Liu & H. Wang, “The effect of alkaline environment on the dissolution of iron ore in aqueous solutions”, Hydrometallurgy 147 (2014) 81. http://dx.doi.org/10.1016/j.hydromet.2014.04.003.

[37] S. Samal, “The dissolution of iron in the hydrochloric acid leach of titania slag obtained from plasma melt separation of metalized ilmenite”, Chemical Engineering Research and Design 89 (2011) 2190. https://dx.doi.org/10.1016/j.cherd.2011.01.026.

[38] F. Faraji, A. Alizadeh, F. Rashchi & N. Mostoufi, “Kinetics of leaching: a review”, Reviews in Chemical Engineering 38 (2020) 113. http://dx.doi.org/10.1515/revce-2019-0073.

[39] J. Siepmann & N. A. Peppas, “Higuchi equation: derivation, applications, use and misuse”, International Journal of Pharmaceutics 418 (2011) 6. http://dx.doi.org/10.1016/j.ijpharm.2011.03.051.

[40] K. Huang, K. Inoue, H. Harada&H. Kawakita, “Leaching behavior of heavy metals with hydrochloric acid from fly ash generated in municipal waste incineration plants”, Transactions of Nonferrous Metals Society of China 21 (2011) 1422. https://dx.doi.org/10.1016/S1003-6326(11)60876-5.

[41] A. A. Baba, F. A. Adekola, O. I. Dele-Ige & R. B. Bale, “Investigation of dissolution kinetics of a Nigerian tantalite ore in nitric acid”, Journal of Minerals & Materials Characterization & Engineering 7 (2007) 83. https://www.researchgate.net/publication/242150835.

Published

2025-03-16

How to Cite

Physicochemical analysis and dissolution kinetics of Itakpe iron ore in acid, base and aqueous media. (2025). African Scientific Reports, 4(1), 260. https://doi.org/10.46481/asr.2025.4.1.260

Issue

Section

CHEMISTRY SECTION

How to Cite

Physicochemical analysis and dissolution kinetics of Itakpe iron ore in acid, base and aqueous media. (2025). African Scientific Reports, 4(1), 260. https://doi.org/10.46481/asr.2025.4.1.260