Geochemical assessments and human health risk evaluations of selected farm soils within the Abuja metropolis, North-central, Nigeria

Authors

  • Akintayo O. Ojo Applied Sciences Department, Federal University of Allied Health Sciences, Enugu, Nigeria
  • Magdalene E. Nnamso-Ubokudom Dental and Maxillofacial Department, National Hospital, Garki, Abuja, Nigeria
  • Onyebuchi F. Nzekwe Dental and Maxillofacial Department, National Hospital, Garki, Abuja, Nigeria

Keywords:

Soils, Toxin concentrations, Contamination indices, Health risks

Abstract

Toxin accumulations in agricultural soils decreases the crop quality and productivity, and threatens the safety of foods, which could cause adverse human health effects. This study assessed the risks associated with potential toxins in the agricultural soils obtained from Lugbe and Jikwoyi in Abuja, Nigeria. An analytical technique for absorption spectrophotometry was adopted, and human health risks were evaluated. Twenty soil samples were collected from two farmlands, and two control samples were taken on unpolluted sites at depths 5-20 cm from the surface at the average suspension of plant roots where the soil holds most plant nutrients and water at a space interval of 5 m. The soils generally had low mean concentrations of Ca, Cu, Zn, Mn, Fe, and Co and moderately high mean concentrations of F, Ni, Pb, Cr, and Mo. The pattern of the pollutants reflected that the pollutants were majorly from anthropogenic activities, such as long-term fertilizer applications and other agrochemicals. The contamination indices revealed reassuringly low to moderate pollution risks to humans. The overall pollution loads suggested that the samples were largely unpolluted. The non-carcinogenic and carcinogenic health risks were within the safety limits for inhalation, dermal, and ingestion, which pose no significant risk to children and adults living in the vicinities of the farmlands. The cancer risks for inhalation were higher than dermal and ingestion, with Cr showing the highest values. The samples were slightly contaminated with potentially toxic metals, which could lead to increased phyto-accumulations, soil pollution, and groundwater contamination.

Dimensions

S. Sepehya, D. Mehta, A. Kumar, R. Sharma, D. Sharma & A. Sharma, “Concept and assessment methodology of soil quality: A review”, International Journal of Plant & Soil Science 36 (2024) 164. https://doi.org/10.9734/ijpss/2024/v36i54513.

A. O. Ojo, O. T. Olurin & O. O. Adeleke, “Soil contamination and risk assessments on selected dumpsites within the basement complex and sedimentary formations of Ogun State, South-western Nigeria”, Applied Environmental Research 44 (2022) 27. https://doi.org/10.35762/AER.2022.44.4.2

M. S. Dogan, M. C. Yavas, Y. Yavuz, S. Erdogan, İ. Yener, İ. Simsek, Z. Akkus, V. Eratilla, A. Tanik & M.Z. Akdag, “Effect of electromagnetic fields and antioxidants on the trace element content of rat teeth”, Drug Design, Development and Therapy 11 (2017) 1393. https://doi.org/10.2147/DDDT.S132308.

J. Matschullat, I. C. Reimann, M. Birke, A. Demetriades, P. Filzmoser & P. O’Connor, “Chemistry of Europe’s agricultural soils”, Environmental Earth Sciences 72 (2014) 3239. https://doi.org/10.1007/s12665-014-3487-z.

U. Mahmud, M. B. Salam, A. S. Khan & M. M. Rahman, “Ecological risk of heavy metal in agricultural soil and transfer to rice grains”, Discover Materials 1 (2021) 10. https://doi.org/10.1007/s43939-021-00010-2.

Z. Qamar, Z. B. Haji Abdul Rahim, H. P. Chew & T. Fatima, “Influence of soil trace elements on dental enamel properties: a review”, Journal of the Pakistan Medical Association 67 (2017) 116. https://pubmed.ncbi.nlm.nih.gov/28065967/.

S. Zeng, J. Ma, Y. Yang, S. Zhang, G.-J. Liuc & F. Chena, “Spatial assessment of farmland soil pollution and its potential human health risks in China”, Science of the Total Environment 687 (2019) 642. https://doi.org/10.1016/j.scitotenv.2019.05.291.

Z. Hussain, L. Deng, X. Wang, R. Cui & G. Liu, “A Review of Farmland Soil Health Assessment Methods: Current Status and a Novel Approach”, Sustainability 14 (2022) 9300. https://doi.org/10.3390/su14159300.

A. O. Ojo, O. T. Olurin, S. A. Ganiyu, B. S. Badmus & A. O. Idowu, “Hydro-geochemical assessment of an open dumpsite in a basement complex of Abeokuta, Ogun State, Southwestern Nigeria”, Arabian Journal of Geosciences 13 (2020) 620. https://doi.org/10.1007/s12517-020-05651-w.

S. A. Mashi, A. I. Inkani & O. D. Oghenejabor, “Determinants of awareness levels of climate smart agricultural technologies and practices of urban farmers in Kuje, Abuja, Nigeria. Technology in Society 70 (2022) 102030. https://doi.org/10.1016/j.techsoc.2022.102030.

T.M. Mungai, A.A. Owino, V.A. Makokha, G. Yao, X. Yan & J. Wang, “Occurrences and toxicological risk assessment of eight heavy metals in agricultural soils from Kenya, Eastern Africa”, Environmental Science and Pollution Research International 23 (2016) 18533. https://doi.org/10.1007/s11356-016-7042-1.

T. Itiowe, S. M. Hassan & V. A. Agidi, “Analysis of rainfall trends and patterns in Abuja, Nigeria”, Current Journal of Applied Science and Technology 34 (2019) 1. https://doi.org/10.9734/cjast/2019/v34i430139.

O. Balogun, The federal capital territory of Nigeria: A geography of its development, Ibadan University Press, University of Ibadan, Nigeria, 2001, pp. 100-123. https://books.google.com.ng/books/about/The Federal Capital Territory of Nigeria.html?id=eo4PAQAAMAAJ&rediresc=y.

P. D. Dawam, Geography of Abuja, federal capital territory, Geography Department, University of Abuja, Nigeria, 2000, pp. 20-39.

S.M. Yahaya, F. Abubakar & N. Abdu, “Ecological risk assessment of heavy metal-contaminated soils of selected villages in Zamfara State, Nigeria”, SN Applied Sciences 3 (2021) 168. https://doi.org/10.1007/s42452-021-04175-6.

World Health Organization, Guidelines for drinking-water quality, fourth edition, Geneva, 2017. https://www.who.int/publications/i/item/9789241549950.

S. M. Shaheen, A. El-Naggar, V. Antoniadis, F. S. Moghanm, Z. Zhang, D. C. W. Tsang, Y. S. Ok & J. Rinklebe, “Release of toxic elements in fishpond sediments under dynamic redox conditions: assessing the potential environmental risk for a safe management of fisheries systems and degraded waterlogged sediments”, Journal of Environmental Management 255 (2020) 109778. https://doi.org/10.1016/j.jenvman.2019.109778.

Environmental guidelines and standards for the petroleum industry in Nigeria, the Department of Petroleum Resources, 2022. Revised Ed. [Online]. https://www.aziza.com.ng/wp-content/uploads/2020/06/environmental-guidelines-and-standards-for-the-petroleum-industry-in-nigeria-egaspin-2002.pdf.

N. Wang, A. Wang, L. Kong & M. He, “Calculation and application of Sb toxicity coefficient for potential ecological risk assessment”, Science of the Total Environment 610 (2018) 167. https://doi.org/10.1016/j.scitotenv.2017.07.268.

S. Mukhopadhyay, S. Chakraborty, P. B. S. Bhadoria, B. Li & D.C. Weindorf, “Assessment of heavy metal and soil orga-nic carbon by portable X-ray fluorescence spectrometry and NixPro™ sensor in landfill Soils of India”, Geoderma Regional 20 (2020) Be00249. https://doi.org/10.1016/j.geodrs.2019.e00249

A.S. Bali & G.P.S. Sidhu “Heavy metal contamination indices and ecological risk assessment index to assess metal pollution status in different soils”, in Heavy Metals in the Environment, Elsevier, 2021, pp. 87-98. https://doi.org/10.1016/B978-0-12-821656-9.00005-5.

R. Sutherland “Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii”, Environmental Geology 39 (2000) 611. https://doi.org/10.1007/s002540050473.

A. Miletić, M. Lučić & A. Onjia, “Exposure factors in health risk assessment of heavy metal(loid)s in soil and sediment”, Metals 13 (2023) 1266. https://doi.org/10.3390/met13071266.

Effluent limitations guidelines, pretreatment standards, commercial hazardous waste combustor subcategory by US Environmental Protection Agency, 2002. Federal Register 65 (18) 40 CFR Part 423, Washington DC, EPA-Water. [Online]. https://www.federalregister.gov/documents/2000/01/19/00-1037/effluent-limitations-guidelines-pretreatment-standards-and-new-source-performance-standards-for-the.

P. Santos, J. Ribeiro, J. Espinha Marques & D. Flores, “Environmental and health risk assessment of soil adjacent to a self-burning waste pile from an abandoned coal mine in Northern Portugal”, Environments 10 (2023) 53. https://doi.org/10.3390/environments10030053.

W. Ahmad, R. D. Alharthy, M. Zubair, M. Ahmed, A. Hameed & S. Rafique, “Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk”, Scientific Report 11 (2021) 17006. https://doi.org/10.1038/s41598-021-94616-4.

J. Rinklebe, V. Antoniadis, S. M. Shaheen, O. Rosche & M. Altermann, “Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International 126 (2019) 76. https://doi.org/10.1016/j.envint.2019.02.011.

W. Wang, N. Lu, H. Pan, Z. Wang, X. Han, Z. Zhu & J. Guan, “Heavy metal pollution and its prior pollution source identification in agricultural soil: a case study in the Qianguo Irrigation District, Northeast China. Sustainability 14 (2022) 4494. https://doi.org/10.3390/su14084494.

Y. Huang, Q. Chen, M. Deng, J. Japenga, T. Li, X. Yang & Z. He, “Heavy Metal pollution and health risk assessment of agricultural soils in a typical Peri-urban area in Southeast China”, Journal of Environmental Management 207 (2018) 159. https://doi.org/10.1016/j.jenvman.2017.10.072.

X. Chen, S. Huang, X. Xie, M. Zhu, J. Li, X. Wang & L. Pu, “Enrichment, source apportionment and health risk assessment of soil potentially harmful elements associated with different land use in coastal tidelands reclamation area, Eastern China”, International Journal of Environmental Research and Public Health 17 (2020) 2822. https://doi.org/10.3390/ijerph17082822.

Framework for Metals Risk Assessment by U.S. Environmental Protection Agency, 2007. Office of the Science Advisor, Risk Assessment Forum, Washington, DC 20460, EPA 120/R-07/00, pp 172. [Online]. https://epa.gov/osa.

T.M. Chiroma, R.O. Ebewele & F.K. Hymore, “Comparative Assessment of heavy metal levels in soil, vegetables and urban grey water used for irrigation in Yola and Kano”, International Refereed Journal of Engineering and Science 3 (2014) 1. https://irjes.com/Papers/vol3-issue2/A03020109.pdf.

A. El-Naggar, N. Ahmed, A. Mosa, N.K. Niazi, B. Yousaf, A. Sharma, B. Sarkar, Y. Cai & S.X. Chang, “Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar”, Journal of Hazardous Materials 419 (2021) 126421. https://doi.org/10.1016/j.jhazmat.2021.126421.

M. M. Poznanović Spahić, S. M. Sakan, B. M. Glavaš-Trbić, P. I. Tančić, S. B. Škrivanj, J. R. Kovačević & D. D. Manojlović, “Natural and anthropogenic sources of chromium, nickel and cobalt in soils impacted by agricultural and industrial activity (Vojvodina, Serbia)”, Journal of Environmental Science and Health A 54 (2019) 219. https://doi.org/10.1080/10934529.2018.1544802.

World Health Organization, “Guidelines for Trace Elements in Human Nutrition and Health”, Geneva, Switzerland, 1996. [Online] https://www.who.int/publications/i/item/9241561734.

M. Rehman, L. Liu, Q. Wang, M. H. Saleem, S. Bashir, S. Ullah & D. Peng, “Copper environmental toxicology, recent advances, and future outlook: a review. Environmental Science and Pollution Research 26 (2019) 18003. https://doi.org/10.1007/s11356-019-05073-6.

A. R. Mir, J. Pichtel & S. Hayat, “Copper: uptake, toxicity and tolerance in plants and management of Cu-contaminated soil”, BioMetals 34 (2021) 737. https://doi.org/10.1007/s10534-021-00306-z.

M.O. Azeez, O.O. Adesanwo & J.A. Adepetu, “Effect of Copper (Cu) application on soil available nutrients and uptake, African Journal of Agriculture Research 10 (2015) 359. https://doi.org/10.5897/AJAR2014.9010.

B. J. Alloway, “Trace metals and metalloids in soils and their bioavailability”, in Heavy metals in soils environmental pollution, Springer, Dordrecht, 2013. https://doi.org/10.1007/978-94-007-4470-7.

X. Hu, X. Wei, J. Ling & J. Chen, “Cobalt: an essential micronutrient for plant growth?”, Frontiers in Plant Science 12 (2021) 768523. http://dx.doi.org/10.3389/fpls.2021.768523.

P. Banerjee & P. Bhattacharya, “Investigating cobalt in soil-plant-animal-human system: dynamics, impact and management”, Journal of Soil Science and Plant Nutrition 21 (2021) 2339. https://doi.org/10.1007/s42729-021-00525-w.

A. Kabata-Pendias, Trace elements in soils and plants, 4th Edition, CRC Press, Taylor and Francis Group, Boca Raton, USA, 2011. https://doi.org/10.1201/b10158.

I. C. Smith & B. L. Carson, Trace metals in the environment, Ann Arbor Science Publishers, Ann Arbor, 1981. https://www.amazon.com/Trace-Metals-Environment-Zirconium-v/dp/0250402165.

S.L. O’Neal & W. Zheng, “Manganese toxicity upon overexposure: a decade in review”, Current Environmental Health Report 2 (2015) 315. https://doi.org/10.1007/s40572-015-0056-x.

H. M. Queiroz, S. C. Ying, M. Abernathy, D. Barcellos, F. A. Gabriel, X. L. Otero, G. N. Obrega, A. F. Bernardino & T. O. Ferreira

“Manganese: The overlooked contaminant in the world largest mine tailings dam collapse”, Environment International 146 (2021) 106284. https://doi.org/10.1016/j.envint.2020.106284.

H. M. Queiroz, B. Maki, A. D. Ferreira, A. G. F. Boim, S. C. Ying, G. N. Nóbrega, X. L. Otero & T. O. Ferreira, “Manganese: The rise of an unnoticed environmental contaminant”, in Inorganic contaminants and radionuclides, Elsevier, 2024, pp. 151-188. https://doi.org/10.1016/B978-0-323-90400-1.00002-1.

U. Mahmud, M. T. B. Salam, A. S. Khan & M. M. Rahman, “Discover materials research ecological risk of heavy metal in agricultural soil and transfer to rice grains”, Discover Materials 1 (2021) 10. https://doi.org/10.1007/s43939-021-00010-2.

Z. Felix Evaluate long-term fate of metal contamination after mine spill: Assessing contaminant changes in soil: The Guadiamar case study, Southern Spain, M.Sc. Thesis, Wageningen University, Spain, 2014. https://digital.csic.es/bitstream/10261/169910/1/Evaluate long term fate metal 2015 Tesis.pdf.

C. Noulas, M. Tziouvalekas & T. Karyotis, “Zinc in soils, water and food crops”, Journal of Trace Elements in Medicine and Biology 49 (2018) 252. https://doi.org/10.1016/j.jtemb.2018.02.009.

M. T. Hasnine, M. E. Huda, R. Khatun, A. H. M. Saadat, M. Ahasan, S. Akter, M. F. Uddin, A. N. Monika, M. A. Rahman & M. Ohiduzzaman, “Heavy metal contamination in agricultural soil at DEPZA, Bangladesh”, Environment and Ecology Research 5 (2017) 510. http://dx.doi.org/10.13189/eer.2017.050707.

P. Srivastava, N. Bolan, V. Casagrande, J. Benjamin, S. A. Adejumo, Sabir, Z. U. R. Farooqi, Saifullah & A. Sarkar, Lead in soils: sources, bioavailability, plant uptake, and remediation. Appraisal of Metal(loids) in the Ecosystem, Elsevier, 2022, pp. 331-360. https://doi.org/10.1016/B978-0-323-85621-8.00005-4.

G.K. Kinuthia, V. Ngure, D. Beti, R. Lugalia, A. Wangila & L. Kamau, “Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication”, Scientific Reports 10 (2020) 8434. https://doi.org/10.1038/s41598-020-65359-5.

Centers for Disease Control and Prevention, “Managing elevated blood lead levels among young children: recommendations from the advisory committee on childhood lead poisoning prevention”, Atlanta, 2002. [Online]. https://stacks.cdc.gov/view/cdc/147830.

A. Ertani, A. Mietto, M. Borin & S. Nardi, “Chromium in agricultural soils and crops: A review”, Water, Air, and Soil Pollution 228 (2017) 190. https://doi.org/10.1007/s11270-017-3356-y.

P. Sharma, S. P. Singh, S. K. Parakh & Y. M. Tong, “Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction”, Bioengineered 13 (2022) 4923. https://doi.org/10.1080/21655979.2022.2037273.

S. A. Anjum, U. Ashraf, I. Khan, M. F. Saleem & L. C. Wang, “Chromium toxicity induced alterations in growth, photosynthesis, gas exchange attributes and yield formation in maize”, Pakistan Journal of Agricultural Sciences 53 (2016) 751. https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.cabidigitallibrary.org/doi/pdf/10.5555/20163398829.

R. A. Caparros-Gonzalez, M. J. Giménez-Asensio, B. González-Alzaga, C. Aguilar-Garduño, J. A. Lorca-Marı́n, J. Alguacil, I. Gómez-Becerra, J. L. Gómez-Ariza, T. Garcı́a-Barrera, A. F. Hernandez, I. López-Flores, D. S. Rohlman, D. Romero-Molina, I. Ruiz-Pérez & M. Lacasaña, “Childhood chromium exposure and neuropsychological development in children living in two polluted areas in southern Spain”, Environmental Pollution 252 (2019) 1550. https://doi.org/10.1016/j.envpol.2019.06.084.

N. Sharma, K. K. Sodhi, M. Kumar & D. K. Singh, “Heavy metal pollution: Insights into chromium eco-toxicity and recent advancement in its remediation”, Environmental Nanotechnology, Monitoring and Management 15 (2021) 100388. https://doi.org/10.1016/j.enmm.2020.100388.

Z. I. Khan, R. Haider, K. Ahmad, M. Nadeem, A. Ashfaq, A. F. Alrefaei, M. H. Almutairi, N. Mehmood, A. I. Batool, H. Memona, I. R. Noorka, S. Akhtar & I. Ugulu, “Evaluation of Cu, Zn, Fe, and Mn concentrations in water, soil, and fruit samples in Sargodha district, Pakistan”, Sustainability 15 (2023) 15696. https://doi.org/10.3390/su152215696.

D. Wang & D. Astruc, “The recent development of efficient Earth-abundant transition-metal nano-catalysts”, Chemical Society Reviews 46 (2017) 816. https://doi.org/10.1039/C6CS00629A.

S. Akhtar, M. Luqman, M. U. Farooq Awan, I. Saba, Z. I. Khan, K. Ahmad, A. Muneeb, M. Nadeem, A. I. Batool, M. Shahzadi, H. Memona, S. H. Ahmad, G. Mustafa & R. M Zubair, “Health risk implications of iron in wastewater soil-food crops grown in the vicinity of peri urban areas of the District Sargodha”, PLoS One 17 (2022) e0275497. https://doi.org/10.1371/journal.pone.0275497.

M. Yalçın & K. M. Çimrin, “Determination of molybdenum contents and relation of some heavy metals in the soil of meadow-pasture terraces between Kirikhan-Reyhanli”, Turkish Journal of Agriculture - Food Science and Technology 7 (2009) 13. https://doi.org/10.24925/turjaf.v7i1.13-21.1997.

B. N. Kaiser, K. L. Gridley, J. N. Brady, T. Phillips & S. D. Tyerman, “The role of molybdenum in agricultural plant production”, Annals of Botany 96 (2005) 745. https://doi.org/10.1093/aob/mci226.

U. Axelson, M. Söderström & A. Jonsson, “Risk assessment of high concentrations of molybdenum in forage”, Environmental Geochemistry and Health 40 (2018) 2685. https://doi.org/10.1007/s10653-018-0132-x.

U. C. Gupta & J. Lipsett, “Molybdenum in soils, plants, and animals”, Advances in Agronomy 34 (1981) 73. https://doi.org/10.1016/S0065-2113(08)60885-8.

R. Prasad & Y. S. Shivay, “Calcium as a plant nutrient”, International Journal of Bio-resource and Stress Management 11 (2020) i. https://doi.org/10.23910/1.2020.2075a.

R. De Mello Prado, Mineral nutrition of tropical plants, Springer Cham, 2021. https://doi.org/10.1007/978-3-030-71262-4.

Antoniadis V., S. M. Shaheen, J. Boersch, T. Frohne, G. Du Laing & J. Rinklebe, “Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany”, Journal of Environmental Management 186 (2017) 192. https://doi.org/10.1016/j.jenvman.2016.04.036.

Published

2024-11-16

How to Cite

Geochemical assessments and human health risk evaluations of selected farm soils within the Abuja metropolis, North-central, Nigeria. (2024). African Scientific Reports, 3(3), 232. https://doi.org/10.46481/asr.2024.3.3.232

Issue

Section

GEOSCIENCES SECTION

How to Cite

Geochemical assessments and human health risk evaluations of selected farm soils within the Abuja metropolis, North-central, Nigeria. (2024). African Scientific Reports, 3(3), 232. https://doi.org/10.46481/asr.2024.3.3.232