Impact of high protein diet on the formation and healing of L-arginine induced acute pancreatitis in male wistar rats

Authors

  • Tosan Peter Omayone Department of Physiology, School of Basic Medical Sciences, College of Health Sciences, Federal University of Technology, Akure, Ondo state, Akure, Nigeria
  • Ibrahim Aliyu Department of Physiology, School of Basic Medical Sciences, College of Health Sciences, Federal University of Technology, Akure, Ondo state, Akure, Nigeria
  • Grace Iyabo Adebayo-Gege Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Baze University, Abuja, Nigeria

Keywords:

High protein diet, L-arginine, Acute pancreatitis, Antioxidants, MDA

Abstract

The condition known as acute pancreatitis is defined as the inflammation of the pancreas, commonly caused by gallstones and alcohol ingestion. The paucity of information on its management in combination with other factors such as adverse effects resulting from treatment has redirected the attention of researchers to safer, alternate therapies. This study aims to assess the role of a high-protein diet in mitigating acute pancreatitis caused by L-arginine. Two groups of twenty male rats were randomly assigned; groups fed with normal diet (NP), and groups fed with high-protein diet (HPD). Acute pancreatitis was induced with L-arginine monohydrochloride at dose of 250mg/Kg. It was administered 3 times at interval of one hour. After induction, the groups were further grouped into subgroups upon observations on day 3 and day 7. Lipid peroxidation (MDA level), total protein and antioxidants parameters such as hydrogen peroxide, nitric oxide. sulfurhydric acid concentration, total antioxidant capacity (TAC), CAT, GPx and NO were evaluated using spectrophotometry. Every data set was shown as mean °æ SEM and as an ANOVA with a post-hoc analysis at α= 0.05. Findings revealed that the high protein diet administered significantly increased the protein level, sulfurhydryl concentration, TAC, CAT, GPx and NO compared to the acute pancreatitis model on day 3, and had no significant effect in most parameters on day 7. Lipid peroxidation substantially decreased in the treatment groups when compared to pancreatitis model. High protein diet improves the amelioration of acute pancreatitis by enhancing the antioxidant enzymes, nitric oxide and inhibiting the process of lipid peroxidation.

Dimensions

[1] M. G. Brizi, F. Perillo, F. Cannone, L. Tuzza & R. Manfredi, “The role of imaging in acute pancreatitis”, Radiol Med. 126 (2021) 1017. https://doi.org/10.1007/s11547-021-01359-3.

[2] P. A. Banks, T. L. Bollen, C. Dervenis, H. G. Gooszen, C. D. Johnson & M. G. Sarr, “Classification of acute pancreatitis–2012: revision of the Atlanta classification and definitions by international consensus”, Gut. 62 (2013) 102. https://doi.org/10.1136/gutjnl-2012-302779

[3] A. Lugea, R. T. Waldron, O. A. Mareninova, N. Shalbueva, N. Deng, H. Y. Su, D. D. Thomas, E. K. Jones, S. W. Messenger, J. Yang, C. Hu, I. Gukovsky, Z. Liu, G. E. Groblewski, A. S. Gukovskaya, F. S. Gorelick & S. J. Pandol, “Human pancreatic acinar cells: proteomic characterization, physiologic responses, and organellar disorders in ex vivo pancreatitis”, American Journal of Pathology 187 (2017) 2726. https://doi.org/10.1016/j.ajpath.2017.08.017

[4] A. S. Gukovskaya, S. J. Pandol & I. Gukovsky, “New insights into the pathways initiating and driving pancreatitis”, Current Opinion in Gastroenterology 32 (2016) 429. https://doi.org/10.1097/MOG.0000000000000301.

[5] S. J. O’Brien & E. Omer, “Chronic pancreatitis and nutrition therapy”, Nutrition in Clinical Practice 34 (2019) S13. https://doi.org/10.1002/ncp.10379.

[6] M. Ramanathan & A.A. Aadam, “Nutrition management in acute pan-creatitis”, Nutrition in Clinical Practice 34 (2019) S7. https://doi.org/10.1002/ncp.10386.

[7] D. Yadav, M. O’Connell & G. I. Papachristou, “Natural history following the first attack of acute pancreatitis”, American Journal of Gastroenterology 107 (2012) 1096. https://doi.org/10.1038/ajg.2012.126.

[8] C. Umapathy, A. Raina, S. Saligram, G. Tang, G. I. Papachristou, M. Rabinovitz, J. Chennat, H. Zeh, A. H. Zureikat, M. E. Hogg, K. K. Lee, M. I. Saul, D. C. Whitcomb, A. Slivka & D. Yadav, “Natural history after acute necrotizing pancreatitis: a large US tertiary care experience”, Journal of Gastrointestinal Surgery 20 (2016) 1844. https://doi.org/10.1007/s11605-016-3264-2.

[9] K. Vipperla, C. Somerville, A. Furlan, E. Koutroumpakis, M. Saul, J. Chennat, M. Rabinovitz, D. C. Whitcomb, A. Slivka, G. I. Papachristou & D. Yadav, “Clinical profile and natural course in a large cohort of patients with hypertriglyceridemia and pancreatitis”, Journal of Clinical Gastroenterology 51 (2017) 77. https://doi.org/10.1097/MCG.0000000000000579.

[10] U. Ahmed Ali, Y. Issa, J. C. Hagenaars, O. J. Bakker, H. van Goor, V. B. Nieuwenhuijs, T. L. Bollen, B. van Ramshorst, B. Witteman, M. A. Brink, A. F. Schaapherder, C. H. Dejong, B. W. Spanier, J. Heisterkamp, E. van der Harst, C. H. van Eijck, M. G. Besselink, H. G. Gooszen, H. C. van Santvoort & M. A. Boermeester, “Risk of recurrent pancreatitis and progression to chronic pancreatitis after a first episode of acute pancreatitis”, Clinical Gastroenterology and Hepatology 14 (2016) 738. https://doi.org/10.1016/j.cgh.2015.12.040.

[11] K. Tsai, S. S. Wang, T. S. Chen, C. W. Kong, F. Y. Chang, S. D. Lee & F. J. Lu, “ Oxidative stress: an important phenomenon with pathogenetic significance in the progression of acute pancreatitis”, Gut. 42 (1998) 850. https://doi.org/10.1136/gut.42.6.850.

[12] S. Bopanna, B. Nayak, S. Prakash, S. Shalimar, S. J. Mahapatra & P. K. Garg, “Increased oxidative stress and deficient antioxidant levels may be involved in the pathogenesis of idiopathic recurrent acute pancreatitis”, Pancreatology 17 (2017) 529. https://doi.org/10.1016/j.pan.2017.06.009.

[13] R. S. Que, L. P. Cao, G. P. Ding, J. A. Hu, K. J. Mao & G. F. Wang, “Correlation of nitric oxide and other free radicals with the severity of acute pancreatitis and complicated systemic inflammatory response syndrome”, Pancreas 39 (2010) 536. https://doi.org/10.1097/MPA.0b013e3181c0e199.

[14] T. Mizunuma, S. Kawamura & Y. Kishino, “Effects of injecting excess arginine on rat pancreas”, The Journal of Nutrition 114 (1984) 467. https://doi.org/10.1093/jn/114.3.467.

[15] M. H. Stipanuk & M. ACaudill. Biochemical, physiological, and molecular aspects of human nutrition e-book, 4th edition, Elsevier, 2018. https://www.uk.elsevierhealth.com/biochemical-physiological-and-molecular-aspects-of-human-nutrition-e-book-9780323402132.html.

[16] M. Stepien, C. Gaudichon, G. Fromentin, P. Even, D. Tom´e & D. Azzout-Marniche, “Increasing protein at the expense of carbohydrate in the diet down-regulates glucose utilization as glucose sparing effect in rats”, PloS One 6 (2011) e14664. https://doi.org/10.1371/journal.pone.0014664.

[17] D. H. Pesta & V. T. Samuel, “A high-protein diet for reducing body fat: mechanisms and possible caveats”, Nutrition and Metabolism 11 (2014) 53. https://doi.org/10.1186/1743-7075-11-53.

[18] The National Academy of Science, Guide for the care and use of laboratory animals: eighth edition, National Academies Press, Washington, DC, 2011. https://www.nap.edu.

[19] T. P. Omayone, O. M. Ijomone, S. B. Oloyede, S. T. Okunola, Z. O. Aigoro, V. U. Esukpa & S. O. Dinakin, “Modulatory action of Moringa oleifera Lam. on L-arginine induced acute pancreatitis”, Journal of Basic and Clinical Physiology and Pharmacology 34 (2021) 707. https://doi.org/10.1515/jbcpp-2021-0149.

[20] A. G. Gornall, C. J. Bardawill & M. M. David, “Determination of serum proteins by means of the biuret reaction”, J Biol Chem. 177 (1949) 751. https://pubmed.ncbi.nlm.nih.gov/18110453/.

[21] R. Varshney & R. K. Kale, “Effects of calmodulin antagonists on radiation-induced lipid peroxidation in microsomes”, International Journal of Radiation Biology 58 (1990) 733. https://doi.org/10.1080/09553009014552121.

[22] A. K. Sinha, “Colorimetric assay of catalase”, Analytical Biochemistry 47 (1972) 389. https://doi.org/10.1016/0003-2697(72)90132-7.

[23] L. J. Ignarro, G. M. Buga, K. S. Wood, R. E .Byrns & G. Chaudhuri”, Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide”, Proceedings of the National Academy of Sciences of the United States of America 84 (1987) 9265. https://doi.org/10.1073/pnas.84.24.9265.

[24] P. Griess, “Bemerkungen zu der Abhandlung der HH. Weselsky und Benedikt Ueber einige Azoverbindungen”, Ber. Deutsch Chem. Ges. 12 (1879) 426. https://doi.org/10.1002/cber.187901201117.

[25] J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman & W. G. Hoekstra, “Selenium: biochemical role as a component of glutathione peroxidase”, Science 179 (1973) 588. https://doi.org/10.1126/science.179.4073.588.

[26] G. L. Ellman, “Tissue sulfhydryl groups”, Archives of Biochemistry and Biophysics 82 (1959) 70. https://doi.org/10.1016/0003-9861(59)90090-6.

[27] C. K. Riener, G. Kada & H. J. Gruber, “Quick measurement of protein sulfhydryls with Ellman’s reagent and with 4,4′-dithiodipyridine”, Analytical and Bioanalytical Chemistry 373 (2002) 266. https://doi.org/10.1007/s00216-002-1347-2.

[28] M. Mittal, M. R.Siddiqui, K. Tran, S. P. Reddy & A. B.Malik, “Reactive oxygen species in inflammation and tissue injury”, Antioxidants & Redox Signaling 20 (2014) 1126. https://doi.org/10.1089/ars.2012.5149.

[29] C. Rosales. ”Neutrophil: a cell with many roles in inflammation or several cell types?” Frontiers in Physiology 9 (2018) 113. https://doi.org/10.3389/fphys.2018.00113.

[30] F. M. Remy & S. Lubos, “Basics in clinical nutrition: nutritional support in acute and chronic pancreatitis”, European e-Journal of Clinical Nutrition and Metabolism 5 (2010) e58. https://doi.org/10.1016/j.eclnm.2009.06.014.

[31] L .A. Frassetto, K. M. Todd, R. C. Morris & A. Sebastian, “Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents”, American Journal of Clinical Nutrition 68 (1998) 576. https://doi.org/10.1093/ajcn/68.3.576.

[32] G. Chunmei & X. Huiyong,“Effect of oxidative damage due to excessive protein ingestion on pancreas function in mice”, International Journal of Molecular Science 11 (2010) 4591. https://doi.org/10.3390/ijms11114591.

[33] C. M. Gu, Y. H. Shi & G. W. Le, “Effect of dietary protein level and origin on the redox status in the digestive tract of mice”, International Journal of Molecular Sciences 9 (2008) 464. https://doi.org/10.3390/ijms9040464.

[34] M. J. DiMagno, J. A. Williams, Y. Hao, S. A. Ernst & C. Owyang, “Endothelial nitric oxide synthase is protective in the initiation of caerulein-induced acute pancreatitis in mice”, American Journal of Physiology Gastrointestinal Liver Physiology 287 (2004) G80. https://doi.org/10.1152/ajpgi.00525.2003.

[35] M. J. DiMagno, “Nitric oxide pathways and evidence-based perturbations in acute pancreatitis”, Pancreatology 7 (2007) 403. https://doi.org/10.1159/000108956.

[36] C. M. C. Andr´es, J. M. P´erez de la Lastra, C. A. Juan, F. J. Plou & E. P´erez-Lebe˜na, “Chemistry of hydrogen peroxide formation and elimination in mammalian cells, and its role in various pathologies”, Stresses 2 (2022) 256. https://doi.org/10.3390/stresses2030019.

[37] K. Jomova, S. Y. Alomar, S. H. Alwasel, N. Eugenie, K. Kamil & V. Maria, “Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants”, Archives of Toxicology 98 (2024) 1323. https://doi.org/10.1007/s00204-024-03696-4.

[38] J. Gaboury, R. C. Woodman, D. N. Granger, P. Reinhardt, & P. Kubes, “Nitric oxide prevents leukocyte adherence: role of superoxide”, American Journal of Physiology-Heart and Circulatory Physiology 265 (1993) H862. https://doi.org/10.1152/ajpheart.1993.265.3.h862.

[39] S. Kanwar & P. Kubes, “Nitric oxide is an antiadhesive molecule for leukocytes”, New Horiz. 3 (1995) 93. http://pubmed.ncbi.nlm.nih.gov/7704596/.

[40] U. F¨orstermann & W. C. Sessa, “Nitric oxide synthases: regulation and function”, European Heart Journal 33 (2012) 829. https://doi.org/10.1093/eurheartj/ehr304.

[41] J. Kiss, D. Lamarque, J. C. Delchier & B. J. Whittle, “Time-dependent actions of nitric oxide synthase inhibition on colonic inflammation induced by trinitrobenzenesulphonic acid in rats”, European Journal of Pharmacology 336 (1997) 219. https://doi.org/10.1016/S0014-2999(97)01246-6.

[42] D. Rachmilewitz, J. Stamler, D. Bachwich, F. Karmeli, Z. Ackerman, D. Podolsky, “Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn’s disease”, Gut. 36 (1995) 718. https://doi.org/10.1136/gut.36.5.718.

[43] M. Miller, H. Sadowska-Krowicka, S. Chotinaruemol, J. L. Kakkis & D. A. Clark, “Amelioration of chronic ileitis by nitric oxide synthase inhibition”, Journal of Pharmacology and Experimental Therapeutics 264 (1993) 11. https://pubmed.ncbi.nlm.nih.gov/7678645.

[44] A. Salas, M. Gironella, A. Salas, A. Soriano, M. Sans, J. Iovanna, J. M Piqu´e & J. Pan´es, “Nitric oxide supplementation ameliorates dextran sulfate sodiuminduced colitis in mice”, Laboratory Investigation 82 (2002) 597. https://doi.org/10.1038/labinvest.3780454.

Published

2025-03-01

How to Cite

Impact of high protein diet on the formation and healing of L-arginine induced acute pancreatitis in male wistar rats. (2025). African Scientific Reports, 4(1), 187. https://doi.org/10.46481/asr.2025.4.1.187

Issue

Section

HEALTH & MEDICAL SCIENCES SECTION

How to Cite

Impact of high protein diet on the formation and healing of L-arginine induced acute pancreatitis in male wistar rats. (2025). African Scientific Reports, 4(1), 187. https://doi.org/10.46481/asr.2025.4.1.187