Assessing the physical and geotechnical properties of subsoils within an active municipal solid waste dumpsite for secured future urban growth

Authors

  • Saheed Adekunle Ganiyu Department of Physics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
  • Oluwaseun Tolutope Olurin Department of Physics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
  • Sulaimon Yinka Makanjuola Department of Physics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
  • Anthony Okeh Department of Physics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
  • Abiodun Oluwatoyin Salawu Department of Physics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
  • Rasaq Akanji Lasisi Department of Physics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria

Keywords:

Near surface soil, Dumpsite, Mechanical properties, Sampling depth, Foundation materials

Abstract

This study attempts to investigate the geotechnical properties of subsoils in an active Dumpsite (DS) within the basement complex area of Abeokuta, Nigeria with a view to assess its suitability as a foundation/filling material. Sixteen (16) composite soil samples were collected from four different parts of the DS at varied depths of 0.0 - 0.5, 0.5 - 1.0, 1.0 - 1.5, and 1.5 - 2.0 m. The soil properties considered are particle size distribution, Specific Gravity (SG), permeability, Shear Strength (SS), Maximum Dry Density (MDD), Optimum Moisture Content (OMC), Natural Moisture Content (NMC) and Atterberg limit (AL) indices. Results show that the assessed soil samples are sandy soils with less than 30% clay content. The ALs test revealed that analysed samples had low Plasticity index (PI) (0.20 - 11.96%), low values of Plastic Limit (PL) and Liquid Limit (LL) of (14.19 - 18.83% and 17.52 - 26.15%, respectively). The MDD values ranged from 1.07 to 1.76 g/cm3 while the NMC and OMC were <25% and <18%, respectively. The permeability coefficients ranged from 1.53 x 10−4 to 8.49 x 10−3 cm/s, indicating moderately permeable soil while the SS results (ranging from 3.4 to 12.5 KPa) indicate low cohesive capacity soils. The tested soils are mildly suitable for foundation/filling materials. Further study is needed to study the trend of alteration of soil properties with depth on dumpsite soil located on other geological formations.

Dimensions

C. A. Bareither, C. H. Benzon & T. B. Edil, “Effects of waste composition and decomposition on the shear strength of municipal solid waste”, Journal of Geotechnical and Geoenvironmental Engineering 138 (2012) 1161. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000702.

R. K. Pandey & R. P. Tiwari, “Physical characterization and geotechnical properties of municipal solid waste”, IOSR Journal of Mechanical & Civil Engineering (IOSR- JMCE) 12 (2015) 15. https://doi.org/10.9790/1684-12121521.

S. A. Ganiyu, B. S. Badmus, M. A. Oladunjoye, A. P. Aizebeokhai, V. C. Ozebo, O. A. Idowu & O. T. Oluein, “Assessment of groundwater contamination around active dumpsite in Ibadan Southwestern Nigeria using Integrated electrical resistivity and hydrochemical methods” Environmental Earth Sciences 75 (2016) 643. https://doi.org/10.1007/s12665-016-5463-2.

A. O. Ojo, O. T. Olurin, S. A. Ganiyu, B. S. Badmus, O. A. Idowu, “Hydro-geochemical assessment of an open dumpsite in a basement complex of Abeokuta, Ogun State, Southwestern Nigeria”, Arabian Journal of Geosciences 13 (2020) 620. https://doi.org/10.1007/s12517-020-05651-w.

J. M. LaBauve, J. Kotuby – Amacher & R. P. Gambrell, “The effect of soil properties and a synthetic municipal landfill leachate on the retention of Cd, Ni, Pb and Zn in soil and sediment material”, Journal of the Water Pollution Control Federation 60 (1988) 379. https://www.jstor.org/stable/25043506.

O. O. Ige, “Hydro-geotechnical assessment of an open-waste disposal site in Ilorin, Nigeria”, Ethiopian Journal of Environmental Studies and Management 7 (2014) 857. https://doi.org/10.4314/ejesm.v7i2.6S.

E. B. Oluwagbemi, V. N. Enwemiwe, E. O. Ayoola, C. C. Obi, J. U. Okushemiya & H. Ufoegbune, “Physicochemical characteristics of soil and water in electronic waste dump site, Alaba, Lagos, Nigeria”, African Scientific Reports 2 (2023) 84. https://doi.org/10.4648/asr.2023.2.1.84.

K. R. Reddy, H. Hettiarachchi, R. K. Giri & J. Gangathulasi, “Effects of degradation on geotechnical properties of municipal solid waste from Orchard Hills Landfill, USA”, International Journal of Geosynthetics & Ground Engineering 1 (2015) 24. https://doi.org/10.1007/s40891-015-0026-2.

A. E. S. Abreu & O. M. Vilar, “Influence of composition and degradation on the shear strength of municipal solid waste”, Waste Management 68 (2017) 263. https://doi.org/10.1016/j.wasman,2017.05.038.

S. Arasan, “Effect of chemicals on geotechnical properties of clay liners: a review” Research Journal of Applied Science and Engineering Technology 2 (2010) 765. https://www.researchgate.net/publication/281080503.

S. M. Khodary, A. M. Negm & A. Tawfik, “Geotechnical properties of the soils contaminated with oils, landfill leachate, and fertilizers”, Arabian Journal of Geosciences 11 (2018) 13. https://doi.org/10.1007/s12517-017-3372-7.

M. A. Gabr & S. N. Valero, “Geotechnical properties of municipal solid waste” Geotechnical Testing Journal ASTM 18 (1995) 241. https://doi.org/10.1520/GTJ10324J.

Y. Zhang, A. Soleimanbeigi, W. J. Likos & T. B. Edil, “Geotechnical and leaching properties of municipal solid waste incineration fly ash for use as embankment fill material”, Transportation Research Record 2579 (2016) 70. https://doi.org/10.3141/2579-08.

D. Thakur, A. K. Gupta & R. Ganguly, “Geotechnical properties of fresh and degraded MSW in the foothill of Shivalik Range Una, Himachal Pradesh”, International Journal of Research Technology & Engineering 8 (2019) 363. https://doi.org/10.35940/ijrte.B1479.078219.

R. A. Blayi, A. F. H. Sherwani, H. H. Ibrahim, R. H. Faraj & A. Daraei, “Strength improvement of expansive soil by utilizing waste glass powder”, Case studies in Construction Materials 13 (2020). e00427. https://doi.org/10.1016/j.cscm.2020.e00427.

E. A. Yerima, A. U. Itodo, R. Sha’Ato, R. A.Wuana, G. O. Egah, S. P. Ma’aji, “Phytoremediation and bioconcentration of mineral and heavy metals in Zea mays interplanted with Striga hermonthica in soils from Mechanic Village Wukari”, African Scientific Reports 1 (2022) 60. https://doi.org/10.4648/asr.2022.1.2.9.

K. Kishore & R. Manickavasagam, “Stabilization of black cotton soil using medical waste”, International Journal of Engineering Research & Technology (IJERT) 10 (2021) 142. http://www.ijert.org/101S050085.

S. Gangadhara & V. S. Ranganath, “Effect of addition of plastic waste on engineering properties of soil”, International Research Journal of Engineering & Technology (IRJET) 03 (2016) 1085. https://www.irjet.net/archives/V13/11/IRJET-V3111193.pdf.

N. Salim, K. Al-Soudany & N. Jajjawi, “Geotechnical properties of reinforced clayey soil using nylons carry’s bag by products”, MATEC Web of Conferences 162 (2018) 01020. https://doi.org/10.1051/matecconf/201816201020.

D. Gardete, R. Luzia, M. Sousa, S. Carronda, & A. Simˆao, Soil stabilization with waste plastic and waste tyre fibres, Proceedings of the XVII European Conference on soil mechanics and Geotechnical Engineering (ECSMGE), 2019, pp. 1-6. https://doi.org/10.32075/17ECSMGE-2019-0894.

M. Abukhetalla & M. Fall, “Geotechnical characterization of plastic waste materials in pavement subgrade applications”, Transportation Geotechnics 27 (2021) 100472. https://doi.org/10.1016/j.trgeo.2020.100472.

H. J. A. Hassan, J. Rasul & M. Samin, “Effects of plastic waste materials on geotechnical properties of clayey Soil”, Transportation Infrastructure Geotechnology 8 (2021) 390. https://doi.org/10.1007/s40515-020-00145-4.

A. N. Amadi, W. G. Akande, I. A. Okunlola, M. O. Jimoh, & D. G.Francis, “Assessment of the geotechnical properties of lateritic soils in Minna, North Central Nigeria for road design and construction”, American Journal of Mining and Metallurgy 3 (2015) 15. https://doi.org/10.12691/ajmm-3-1-3.

W. Slamet & I. Abdelazim, “Estimation of primary compression index (Cc) using physical properties of Pontianak soft clay”, International Journal of Engineering Research & Application (IJERA) 2 (2012) 2232. https://www.ijera.com/papers/Vol2_issue5/NB2522322236.pdf.

G. M. Olayanju, K. A. Mogaji, H. S. Lim & T. S. Ojo, “Foundation integrity assessment using integrated geophysical and geotechnical techniques: case study in crystalline basement complex, southwestern Nigeria”, Journal of Geophysics and Engineering, 14 (2017) 675. https://doi.org/10.1088/1742-2140/aa6417.

A. A. Alabi, “Site characterization for engineering purposes using geophysical and geotechnical techniques”, RMZ-Materials and Geoenvironment 67 (2021) 197. https://doi.org/10.2478/rmzmag-2020-0019.

I. A. Oyediran & P. O. Falae, “Integrated geophysical and geotechnical methods for pre-foundation Investigations”, Journal of Geology & Geophysics 8 (2018) 1000453. https://doi.org/10.4172/2381-8719.1000453.

A. K. Abd El Aal &A. Rouaiguia, “Determination of the geotechnical parameters of soils behaviour for safe future urban development, Najran Area, Saudi Arabia: implications for settlement mitigation”, Geotechnical and Geological Engineering 38 (2019) 695. https://doi.org/10.1007/s10706-019-01058-x.

I. O. Fatoyinbo, A. A. Bello, O. O. Olajire, O. E. Oluwaniyi, O. F. Olabode, A. L. Aremu & L. A. Omoniyi, “Municipal solid waste landfill site selection: a geotechnical and geoenvironmental-based geospatial approach”, Environmental Earth Sciences 79 (2020) 231. https://doi.org/10.1007/s12665-020-08973-10.

O. A. Adenuga, O. A. Bayewu, H. T. Oladunjoye, S. A. Adekoya, “Integrated geophysical assessment of municipal waste disposal site for its geological suitability in terms of the underlain material”, African Scientific Reports 2 (2023) 92. https://doi.org/10.4648/asr.2023.2.3.92.

A. A. Badejo, A. O. Taiwo, A. A. Adekunle & B. S. Bada, “Spatio- temporal levels of essential trace metals around municipal solid waste dumpsite in Abeokuta, Nigeria”, The Pacific Journal of Science and Technology 14 (2013) 682. https://www.akamai.university/files/theme/AkamaiJournal/PJST14_2_682.pdf.

O. O. Olayinka, O. H. Adedeji & R. A. Ipeaiyeda, “Determination of polycyclic aromatic hydrocarbons (PAHs) on selected dumpsites in Abeokuta metropolis, SW, Nigeria” Applied Environmental Research 37 (2015) 33. https://doi.org/10.35762/AER.2015.37.3.3.

Z. O. Ojekunle, B. S. Bada, I. G. Ejimkonye & F. F. Oyebanji, “Assessment of Soil Quality of Saje Dumpsite at Abeokuta, Nigeria”, Journal of Science Research 17 (2018) 45. http://jsribadan.ng/index.php/ojs/article/view/11/7.

S. K. Alausa, I. O. Akanmu, K. Odunaike, A. Adeyeloja & A. O. Olabamiji, “Radiological impact assessment of soil matrices from Saje and Ilaro dumpsites in Southwestern Nigeria”, FUW Trends in Science & Technology 4 (2019) 808. http://www.ftstjournal.com/DigitalLibrary/43Article35.php.

O. I. Poopola & O. A. Adenuga, “Determination of leachate curtailment capacity of selected dumpsites in Ogun State Southwest Nigeria using integrated geophysical methods”, Scientific African 6 (2019) e00208. https://doi.org/10.1016/j.sciaf.2019.e00208.

S. A. Ganiyu, “Evaluation of soil hydraulic properties under different non-agricultural land use patterns in a basement complex area using multivariate statistical analysis”, Environmental Monitoring and Assessment 190 (2018) 595. https://doi.org/10.1007/s10661-018-6959-x.

O. D. Akinyemi, R. Bello, A. T. Ayodeji, D. E. Akanbi, M. M. Ibine & J. A. Popoola, “Evaluation of water quality in Abeokuta, Southwest Nigeria”, International Journal of Water Resources and Environmental Engineering 3 (2011) 341. https://doi.org/10.5897/IJWREE11.099.

A. G. Akinse & A. M. Gbadebo, “Geological mapping of Abeokuta metropolis, Southwestern Nigeria”, International Journal of Science and Engineering Research 7 (2016) 979. https://www.ijser.org/researchpaper/Geologic-Mapping-of-Abeokuta-Metropolis-Southwestern-Nigeria.pdf.

S. A. Ganiyu, A. T. Oyadeyi & A. A. Adeyemi., “Assessment of heavy metal contamination and associated risks in shallow groundwater sources from three different residential areas within Ibadan metropolis, southwest Nigeria”, Applied Water Science 11 (2021) 81. https://doi.org/10.1007/s13201-021-01414-4.

M. O. Oloruntola & G. O. Adeyemi, “Geophysical and hydrochemical evaluation of groundwater potential and character of Abeokuta area, Southwestern Nigeria”, Journal of Geography& Geology 6 (2014) 162. https://doi.org/10.5539/jgg.v6n3p162.

H. A. Jones & R. D. Hockey, “The geology of part of South-western Nigeria”, Geological Survey of Nigeria Bull 31 (1964) 22. https://books.google.com.ng/books/about/The_Geology_of_Part_of_South_western_Nig.html?id=rHQYzwEACAAJ&redir_esc=y.

G. C. Ufoegbune, K. I. Lamidi, J. A. Awomeso, A. O. Eruola, O. A. Idowu & C. O. Adeofun, “Hydrogeological characteristics and groundwater quality assessment in some selected communities of Abeokuta, Southwestern, Nigeria”, Journal of Environmental Chemistry & Ecotoxicology 1 (2009) 10. https://academicjournals.org/journal/JECE/article-full-text-pdf/AD0DE811393.

G. W. Gee & D. Or, “Particle size analysis”, in Methods of soil Analysis, Part 4, Physical methods, Dane J.H., Topp, G C (eds), SSSA Inc, Madison, 2002, pp. 255-293. https://doi.org/10.2136/sssabookser5.4.c12.

ASTM D2216-10, “Standard Test Method for unconfined compressive strength of cohesive soil”, ASTM International, 2016. https://www.astm.org/d2216-06.html.

ASTM D5084, “Standard Test Method for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter”, ASTM International, West Conshohocken, PA, 2017. https://www.astm.org/d5084-16a.html.

ASTM D698, “Standard Test Method for laboratory compaction characteristics of soil using modified effort, D1557”, ASTM International West Conshohocken PA, 2007. https://www.astm.org/d1557-12r21.html.

ASTM D6528, “Standard Test Method for consolidated undrained direct simple shear testing of fine grained Soils”, ASTM International, West Conshohocken, PA, 2017. https://www.astm.org/d6528-17.html.

ASTM D4318, “Standard Test Methods for liquid limit, plastic limit, plasticity index of soils”, ASTM International, West Conshohocken, PA, 2017. https://www.astm.org/d4318-17e01.html.

ASTM D854, “Standard Test Methods for specific gravity of soil solids by water pycnometer”, ASTM International, West Conshohocken, PA, 2014. https://www.astm.org/standards/d854.

J. C. Egbueri & C. N. Mgbenu, “Chemometric analysis of pollution source identification and human health risk assessment of water resources in Ojoto Province, Southeast Nigeria”, Applied Water Science 10 (2020) 98. https://doi.org/10.1007/s13201-020--01180-9.

S. A. Ganiyu, A. A. Mabunmi, O. T. Olurin, A. A. Adeyemi, O. A. Jegede & A. Okeh, “Assessment of microbial and heavy metal contamination in shallow handbug wells bordering Ona River, Southwest Nigeria”, Environmental Monitoring and Assessment 193 (2021) 126. https://doi.org/10.1007/s10661-021-08910-9.

Federal Ministry of Works and Housing (FMW&H), General Specification for Road and Bridges, Vol II, Federal Highway Department, FMWH, Lagos, Nigeria, 1997, pp. 145-284. https://books.google.com.ng/books/about/General_Specification_Roads_and_Bridges.html?id=hE_VzgEACAAJ&redir_esc=y.

R. L. Handy, “Collapsible loess in Iowa”, Soil Science Society of America Journal 37 (1973) 281. https://doi.org/10.2136/sssaj1973.03615995003700020033x.

U. O. Emmanuel, I. Ogbonnaya, U. B. Uche, “An investigation into the cause of road failure along Sagamu Papalanto highway southwestern Nigeria”, Geo Environmental Disaster 8 (2021) 3. https://doi.org/10.1186/s40677-020-00174-8.

M. Alhassan, “Effect of municipal solid waste on geotechnical properties of soils”, International Journal of Environmental Science and Management 1(2012) 204. http://www.ijesmer.com.

G. O. Abagandura, D. Park, & W. C. Bridges Jr, “Surfactant and irrigation impacts on soil water content and leachate of soils and greenhouse sunstrates”, Agrosystems, Geosciences & Environment 4 (2020) e20513. https://doi.org/10.1052/agg2.20153.

S. A. Ganiyu, K. S. Are & O. T. Olurin, “Assessment of geotechnical and physico-chemical properties of age-long greywater-contaminated soils in basement complex areas, southwest Nigeria”, Applied Water Science 10 (2020) 114. https://doi.org/10.1007/s13201-020-01201-7.

J. O. Coker, V. Makinde, J. K. Adesodun & A. O. Mustapha, “Integration of geophysical and geotechnical investigation for a proposed new lecture theatre at the Federal University of Agriculture Abeokuta, SW Nigeria”, International Journal of Emerging Trends in Engineering and Development 5 (2013) 338. https://rspublication.com/ijeted/2013/sep13/38.pdf.

S. Kanmani, R. Gandhimathi & Muthukkumaran, “Bioclogging in porous media: Influence in reduction of hydraulic conductivity and organic contaminants during synthetic leachate permeation”, Journal of Environmental Health Science and Engineering 12 (2014) 126. https://doi.org/10.1186/s40201-014-0126-2.

A. Laskar & S.K. Pal, “Geotechnical characteristics of two different soils and their mixture and relationships between parameters”, EJGE 1 (2012) 2821. http://www.ejge.com/2012/Ppr12.261alr.pdf.

O. Igwe, W. Mode, O. Nnebedum, I. Okonkwo & I. Oha, “The analysis of rainfall induced slope failures at Iva valley area of Enugu State”, Environmental Earth Sciences 71 (2014) 2465. https://doi.org/10.1007/s12665-013-2647-x.

Z. Xiangrong, J. Jianmin & F. Pengfei, “Geotechnical behaviour of the MSW in Tianziling landfill”, Journal of Zhejiang University Science 4 (2003) 324. https://doi.org/10.1631/jzus.2003.0324.

A. Sharma, A. K. Gupta & R. Ganguly, “Impact of open dumping of municipal solid waste on soil properties in mountainous region”, Journal of Rock Mechanics and Geotechnical Engineering 10 (2018) 725. https://doi.org/10.1016/j.jrmge.2017.12.009.

B. A. Mir, “Laboratory study on the effect of plastic waste additive on shear strength of marginal soil”, in Lecture notes in civil Engineering, Sustainable Civil Engineering Practices ICSCEP proceedings, 2020. https://doi.org/10.1007/978-981-15-3677-9.

H. W. Campbell, R. J. Rush & R. Tew, “Sludge Dewatering Design Manual”, Research Report No 72, Ontario Ministry of the Environment, 1978. https://es.ircwash.org/biblio/author/13854.

Y. S. Song, J. M. Yun, W. P. Hong &T. H. Kim, “Investigation of solid waste soil as road construction Material”, Environment Geology, 44 (2003) 203. https://doi.org/10.1007/s00254-002-0746-1.

A. S. Muntohar, A. Widianti, E. Hartono & W. Diana, “Engineering properties of silty soil stabilized with lime and rice husk ash and reinforced with waste plastic fibre”, Journal of Materials in Civil Engineering 25 (2013) 1260. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000659.

U. C. Nebeokike, O. Igwe, J. C. Egbueri & S. I. Ifediegwu, “Erodibility characteristics and slope stability analysis of geological unit prone to erosion in Udi area, Southeast Nigeria”, Modelling Earth Systems and Environment 6 (2020) 1061. https://doi.org/10.1007/s40808-020-00741-w.

E. De Jong, D. F. Acton, & H. B. Stonehouse, “Estimating the atterberg limits of southern Saskatchewan soils from texture and carbon contents”, Canadian Journal of Soil Science 70 (1990) 543. https://doi.org/10.4141/cjss90-057.

M. S. Hossian & M. A. Haque, “Stability analyses of municipal solid waste landfills with decomposition”, Geotechnical &Geoenvironmental Engineering 27 (2009) 659. https://doi.org/10.1007/s10706-009-9265-0.

Y. R. Zhao, Q. Xie, G. I. Wang, Y. J. Zhang, Y. S. Zhang & W. Su, “A study of shear strength properties of municipal solid waste in Chongqing landfill, China”, Environmental Science and Pollution Research 21 (2014) 12605. https://doi.org/10.1007/s11356-014-3183-2.

B. Handa, Gate in Civil Engineering, 1st edition, New Dehli, S.M.T. publication, 2002. https://www.scribd.com/document/474040780/Gate-Civil-Engineering-pdf.

F. G. Bell, Engineering geology, 2nd edition, Elsevier, London, 2007, pp. 207-248. https://shop.elsevier.com/books/engineering-geology/bell/978-0-7506-8077-6.

K. D. Oyeyemi, A. P. Aizebeokhai, T. A. Adagunodo, O. M. Olofinnade, O. A. Sanuade & A. A. Olaojo “Subsoil characterization using geoelectical and geotechnical investigations: implications for foundation studies”, International Journal of Civil Engineering & Technology 8 (2017) 302. https://core.ac.uk/pdf/aaa154229913.pdf.

Federal Ministry of Works and Housing Nigeria, Specification for roads and Bridges, 2013. https://worksandhousing.gov.ng/themes/front end themes 01/images/uploads images/1569352815.pdf.

S. Moradi & E. Ebrahimi, “Relationship between the percentage of clay with liquid limit, plastic limit and plasticity index in four different soil texture class”, Technical Journal of Engineering and Applied Science 3 (2013) 697. https://www.researchgate.net/publication/129178575.

A. I. Husein Malkawi, A. S. Alawneh & O. T.Abu, “Effects of organic matter on the physical and the physicochemical properties of an illitic soil”, Applied Clay Science 14 (1999) 257. https://doi.org/10.1016/S0169-1317(99)00003-4.

B. E. Udom & J. Ehilegbu, “Critical moisture content, bulk density relationships and compaction of cultivated and uncultivated soils in the humid tropics”, Asian soil Research Journal 1 (2018) 1. https://repository.ruforum.org/sites/default/files/UDOM%20AND%20JOY%202018.pdf.

A. L. Al Obaidi, M. A. Yousif & A. I. Hamid, “Effect of relative compaction on the bearing capacity of cohesive soils”, IOP Conference Series 737 (2020) 012108. https://doi.org/10.1088/1757-899x/737/1/012108.

A. Worku & D. Shiferaw, “Prediction of maximum dry density of local granular fills”, JEEA 21 (2004) 59. https://www.ajol.info/index.php/zj/article/view/123931.

Y. Gomaa & G. Abdelrahman, “Correlations between relative density and compaction test parameters”, 12th International colloquium on Structural and Geotechnical Engineering, Cairo, Egypt, 10-12 Dec, 2007. https://www.researchgate.net/publication/348339205.

A. G. Amuda, O. A. U. Uche & A .K. Amuda, “Physicomechanical characterization of basement rocks for construction aggregate: a case study of Kajuru Area, Kaduna, Nigeria”, IOSR Journal of Mechanical & Civil Engineering (IOSR-JMCE) 11 (2004) 46. https://doi.org/10.9790/1684-11664651.

Z. Han, J. Li, P. Gao, B. Huang, J. Ni &C. Wei, “Determining the shear strength and permeability of soils for engineering of new paddy field construction in a Hilly mountainous region of southwestern China”, International Journal of Environmental Research & Public Health, 17 (2020) 1555. https://doi.org/10.3390/ijerph17051555.

E. Millan- Romero & C. Millan- Paramo, “Relationship of water parameters with the moisture content in clay soils”, ARPN Journal of Engineering and Applied Science 15 (2020) 1666. http://www.arpnjournals.org/jeas/research papers/rp 2020/jeas 0820 8276.pdf.

K. A. Rashed, N. B. Salih & T. A. Abdalla, “Correlation of consistency and compressibility properties of soils in Sulaimani city”, Sulaimani Journal of Engineering Sciences 4 (2017) 87. https://doi.org/10.17656/sjes.10061.

N. B. Salih, “Geotechnical characteristics correlations for fine-grained soils”, IOP Conf. Series. Materials Science and Engineering 737 (2020) 012099. https://doi.org/10.1088/1757-899x/737/1/012099.

Published

2024-05-30

How to Cite

Assessing the physical and geotechnical properties of subsoils within an active municipal solid waste dumpsite for secured future urban growth. (2024). African Scientific Reports, 3(2), 184. https://doi.org/10.46481/asr.2024.3.2.184

Issue

Section

GEOSCIENCES SECTION

How to Cite

Assessing the physical and geotechnical properties of subsoils within an active municipal solid waste dumpsite for secured future urban growth. (2024). African Scientific Reports, 3(2), 184. https://doi.org/10.46481/asr.2024.3.2.184