Geothermal resource potentials estimation from the interpretation of aeromagnetic data over parts of Southwestern Nigeria

Authors

  • Emmanuel Ike Department of Physics, Faculty of Physical Sciences, Modibbo Adama University, Yola, Nigeria
  • Adetola Sunday Oniku Department of Physics, Faculty of Physical Sciences, Modibbo Adama University, Yola, Nigeria
  • Sabastine Chinedu Ezike Department of Physics, Faculty of Physical Sciences, Modibbo Adama University, Yola, Nigeria
  • Maxwell Obia Kanu Department of Physics, Faculty of Physical Sciences, Taraba State University, Jalingo, Nigeria
  • Rodney Ewusi-Wilson Department of Civil Engineering, School of Engineering, Cape Coast Technical University, Cape Coast, Ghana

Keywords:

Aeromagnetic, Magnetic-source-depth, Thermal gradient, Heat flow, Geothermal

Abstract

In a bid to explore unconventional electricity generation sources and reduce effects of fossil fuels, this study evaluates geothermal resource potentials over parts of Southwestern Nigeria, precisely depth to the bottom of magnetic source (DBMS), heat flow, geothermal gradient and their relationships. Regional-residual anomaly separation was conducted, and spectral analysis was applied on the residual anomaly component of 14 aeromagnetic data sheets. Depth to the bottom of magnetic source varies between 1.87 and 6.26 km, with average value of 3.50 km, heat flow varies between 23.18 and 77.38 mWm−2, with average value of 43.79 mWm−2, while geothermal gradient varies between 9.27 and 30.95 oC/km with average value of 17.52 oC/km. Northcentral region has the highest heat flow (77.4 mWm−2), followed by Northeast (68.3 mWm−2), Southwest has the least (< 40.0 mWm−2) while Southeast has values in between the extremes. A comparison between the average heat flow and that of ‘thermally stable’ continental regions of the world (60 or 65) mW/m2 gives 72.98 or 67.37% respectively. The estimated heat is probably from mantle plumes, radioactive sources or heat generated from pressures within basements that are overlaid by thick thermally insulated sediments, hence hot magmatic fluid flows into fractured basement and cause hydrothermal alterations of surrounding rocks. Since most geodynamic operations depends on thermal structure of the earth’s crust, the result of this study has undoubtedly contributed significantly to the body of existing thermal knowledge and closed the information gap regarding crustal temperature distribution at depth in Southwest part of Nigeria and Nigeria in general.

Dimensions

L. I. Nwankwo & A. J. Sunday, “Regional estimation of Curie-point depths and succeeding geothermal parameters from recently acquired high-resolution aeromagnetic data of the entire Bida Basin, north-central Nigeria”, Geothermal Energy Science 5 (2017) 1. https://doi.org/10.5194/gtes-5-1-2017.

E. M. Abraham, E. G. Obande, M. Chukwu, C. G. Chukwu & M. R. Onwe, “Estimating depth to the bottom of magnetic sources at Wikki Warm Spring region, northeastern Nigeria, using fractal distribution of sources approach”, Turkish Journal of Earth Sciences 2 (2015) 494. https://doi.org/10.3906/yer-1407-12.

J. U. Megwara, E. E. Udensi, P. I. Olasehinde, M. A. Daniyan & K. M. Lawal, “Geothermal and radioactive heat studies of parts of southern Bida basin, Nigeria and the surrounding basement rocks”, International Journal of Basic and Applied Sciences 2 (2012) 125. https://www.10.14419/ijbas.v2i1.624.

E. M. Abraham, K. M. Lawal & A. A. Lawal, “Interpretation of aeromagnetic data for geothermal energy investigation of Ikogosis Warm Spring Area, Ekiti State, Southwestern Nigeria”, LAP LAMBERT Academic Publishing 1 (2011) 103. https://doi.org/978-3659281204.

K. Ewa & S. Kryrowska, “Geothermal exploration in Nigeria”, Proceedings World Geothermal Congress, Bali, Indonesia 3 (2010) 25. https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/1152.pdf.

L. I. Nwankwo, P. I. Olasehinde & C. O. Akoshile, “An attempt to estimate the Curie-point isotherm depths in the Nupe Basin, West Central Nigeria”, Global Journal of Pure and Applied Sciences 15 (2009) 427. https://www.10.4314/gjpas.v15i3-4.48571.

E. Anakwuba, H. Okeke, I. Chinwuko & C. Onyekwelu, “Estimation of Curie isotherm and heat flow of eastern Chad basin, Nigeria from spectral analysis of aeromagnetic data”, SEG, International Conference and Exhibition, Barcelona, Spain. [Online]. https://doi.org/10.1190/ice2016-6338122.1.

I. E. Bemsen, “Spectral analysis of aeromagnetic data over part of the southern Bida basin, west-central Nigeria”, International Journal of Fundamental Physical Sciences 3 (2013) 27. https://doi.org/10.14331/ijfps.2013.330050.

B. E. Eletta & E. E. Udensi, “Investigation of the curie point isotherm from the magnetic fields of eastern sector of central Nigeria”, Journal of Geo-sciences 2 (2012) 101. https://doi.org/10.5923/j.geo.20120204.05.

A. Usman, A. A. Adetona, R. Abdulwaheed, S. A. Kazeem, T. Adewumi & A. Mohammed, “Assessment of geothermal potentials in some parts of upper Benue trough northeast Nigeria using aeromagnetic data”, Journal of Geoscience, Engineering, Environment, and Technology 4 (2019) 7. https://doi.org/10.25299/jgeet.2019.4.1.2090.

G. E. Obande, K. M. Lawal & L. A. Ahmed, “Spectral analysis of aeromagnetic data for geothermal investigation of Wikki Warm Spring, north-east Nigeria”, Geothermics 50 (2014) 85. https://doi.org/10.1016/j.geothermics.2013.08.002.

A. M. Jessop, M. A. Hobart & J. G. Sclater, The World Heat Flow Data Collection 1975, Geothermal Services of Canada, 1976, pp. 123-135. https://www.osti.gov/etdeweb/biblio/5075588.

W. M. Telford, L. P. Geldart & R. E. Sheriff, Applied Geophysics, Cambridge University Press, Cambridge, UK, 1990, pp. 353-358. https://books.google.com.ng/books?id=Q8ogAwAAQBAJ.

E. Ike, A. S. Oniku, S. C. Ezike & R. Ewusi-Wilson, “Spectral analysis of aeromagnetic data over parts of southwestern Nigeria”, Recent Advances in Natural Sciences 2 (2024) 53. https://doi.org/10.61298/rans.2024.2.1.53.

E. Ike, A. S. Oniku, S. C. Ezike & R. Ewusi-Wilson, “Lithological and structural mapping of parts of southwestern Nigeria using aeromagnetic data”, Recent Advances in Natural Sciences 2 (2024) 54. https://doi.org/10.61298/rans.2024.2.1.54.

R. Black, “Precambrian of West Africa”, Centre G´eologique et G´eophysique in Montpellier, France 3 (1980) 3. https://doi.org/10.18814/epiiugs/1980/v3i4/001.

A. C. Ajibade, M. Woakes & M. A. Rahaman, Proterozoic crustal development in the Pan-African regime of Nigeria, In Proterozic Lithospheric Evolution, A. Kr¨oner (Ed.), Geodynamics Book Series, Proterozic Lithospheric Evolution, 1987, pp. 17. https://doi.org/10.1029/GD017p0259.

Nigerian Geological Survey Agency, “Airborne Magnetic Data”, 2010 https://www.ngsa.gov.ng.

O. K. Likkason, C. O. Ajayi & E. M. Shemang, “A computation of IGRF over Nigeria”, Global Journal of Geological Sciences 5 (2008) 1. https://doi.org/10.4314/gjgs.v5i1.18747.

R. J. Blakely, “Curie temperature isotherm analysis and tectonic implications of aeromagnetic data from Nevada”, Journal of Geophysical Research: Solid Earth 93 (2012) 11817. https://doi.org/10.1029/JB093iB10p11817.

Y. Okubo, R. J. Graf, R. O. Hansen, K. Ogawa & H. Tsu, “Curie point depths of the Island of Kyushu and surrounding areas, Japan”, Geophysics 50 (1985) 481. https://doi.org/10.1190/1.1441926.

Y. Okubo & T. Matsunaga, “Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity”, Journal of Geophysical Research: Solid Earth 99 (2008) 22363. https://doi.org/10.1029/94jb01336.

A. Stampolidis and G. N. Tsokas, ”Curie point depths of Macedonia and Thrace, N. Greece”, Pure and Applied Geophysics 159 (2002) 2659. https://doi.org/10.1007/s00024-002-8752-5.

G. N. Tsokas, R. O. Hansen & M. Fytikas, “Curie point depth of the Island of Crete (Greece)”, Pure and Applied Geophysics 152 (1998) 747. https://doi.org/10.1007/s000240050175.

Y. Okubo, J. Matsushima & A. Correia, “Magnetic spectral analysis in Portugal and its adjacent seas”, Physics and Chemistry of the Earth, Parts A/B/C 28 (2003) 511. https://www.10.1016/s1474-7065(03)00070-6.

P. Trifonova, Z. Zhelev, T. Petrova & K. Bojadgieva, “Curie point depths of Bulgarian territory inferred from geomagnetic observations and its correlation with regional thermal structure and seismicity”, Tectonophysics 473 (2009) 362. https://www.10.1016/j.tecto.2009.03.014.

N. Maden, “Curie point depth from spectral analysis of magnetic data in Erciyes Stratovolcano (Central Turkey)”, Pure Appl. Geophysics 167 (2010) 349. https://doi.org/10.1007/s00024-009-0017-0.

N. Maden, “Two-dimensional geothermal modeling along the Central Pontides magmatic arc (Northern Turkey)”, Surv. Geophysics 33 (2011) 275. https://doi.org/10.1007/s10712-011-9158-7.

A. Spector & F. S. Grant, “Statistical models for interpreting aeromagnetic data,” Geophysics 35 (1970) 293. https://doi.org/10.1190/1.1440092.

A. Tanaka, Y. Okubo & O. Matsubayashi, “Curie point depth based on spectrum analysis of the magnetic anomaly data in east and southeast Asia”, Tectonophysics 306 (1999) 461. https://doi.org/10.1016/S0040-1951(99)00072-4.

L. I. Nwankwo, P. I. Olasehinde & C. O. Akoshile, “Heat flow anomalies from the spectral analysis of airborne magnetic data of Nupe Basin, Nigeria”, Asian Journal of Earth Sciences 1 (2011) 1. https://doi.org/10.3923/ajes.2011.20.28.

A. Stampolidis, I. Kane, G. N. Tsokas & P. Tsourlos, “Curie point depths of Albania inferred from ground total field magnetic data”, Surveys in Geophysics 26 (2005) 461. https://doi.org/10.1190/1.2335572.

K. Njeudjang, J. D. Kana, A. Tom, J. M. A. Essi, N. Djongyang & R. Tchinda, “Curie point depth and heat flow deduced from spectral analysis of magnetic data over Adamawa volcanic region (northern Cameroon): geothermal implications”, SN Applied Sciences 2 (2020)1330. https://doi.org/10.1007/s42452-020-3099-z.

H. E. Ross, R. J. Blakely & M. D. Zoback, “Testing the use of aeromagnetic data for the determination of curie depth in California”, Geophysics 71 (2006) L51. https://doi.org/10.1190/1.2335572.

M. Rajaram, S. P. Anand, K. Hemant & M. E. Purucker, “Curie isotherm map of Indian subcontinent from satellite and aeromagnetic data”, Earth and Planetary Science Letters 281 (2009) 147. https://www.10.1016/j.epsl.2009.02.013.

G. A. Tselentis, “An attempt to define curie point depths in Greece from aeromagnetic and heat flow data”, Pure and Applied Geophysics PAGEOPH 136 (1991) 87. https://doi.org/10.1007/BF00878889.

H. N. Pollack, S. J. Hurter & J. R. Johnson, “Heat flow from the earth’s interior: analysis of the global data set”, Reviews of Geophysics 31 (2010) 267. https://www.10.1029/93rg01249.

E. Omokpariola & E. Anakwuba, “Delineation of geothermal energy potentials in parts of Calabar flank, southeastern Nigeria using aeromagnetic data”, World Scientific News 164 (2021) 77. https://www.10.21203/rs.3.rs-1081543/v1.

Published

2024-04-22

How to Cite

Geothermal resource potentials estimation from the interpretation of aeromagnetic data over parts of Southwestern Nigeria. (2024). African Scientific Reports, 3(1), 179. https://doi.org/10.46481/asr.2024.3.1.179

Issue

Section

GEOSCIENCES SECTION

How to Cite

Geothermal resource potentials estimation from the interpretation of aeromagnetic data over parts of Southwestern Nigeria. (2024). African Scientific Reports, 3(1), 179. https://doi.org/10.46481/asr.2024.3.1.179