Effect of hydrostatic pressure on opto-electronic, elastic and thermoelectric properties of the double perovskites Rb2SeX6(X=Cl,Br): a DFT study


  • A. A. Yahaya Department of Physics and Materials Science, Kwara State University, Malete, Nigeria; Department of Physics, Kebbi State University of Science and Technology, Aliero, Nigeria
  • W. A. Yahya Department of Physics and Materials Science, Kwara State University, Malete, Nigeria
  • I. A. Rahmon Department of Physics and Materials Science, Kwara State University, Malete, Nigeria


Hydrostatic Pressure, Density Functional Theory, Double perovskite, Opto-electronic property, Thermoelectric property


Double perovskites find applications across a diverse range of situations and varying pressure conditions. In this work, Quantum ESPRESSO code with a plane wave basis set was used to study the opto-electronic, elastic, and thermoelectric properties of Rb2SeX6 (X=Cl, Br) double perovskites under hydrostatic pressure (0 - 8 GPa). Perdew-Burke-Ernzerhof for Solids (PBESol) with generalized gradient approximation (GGA) was used as exchange-correlation functional. The band gap values of the materials decrease under hydrostatic pressure. Rb2SeCl6 has a band gap value of 2.44 eV at 0 GPa, 2.21 eV at 2 GPa. Above 2 GPa, the material has a metallic nature. Rb2SeBr6 has a band gap value of 1.56 eV at 0 GPa, but has a metallic nature under hydrostatic pressure (2 GPa to 8 GPa). The optical properties results indicate that the materials exhibit maximum absorption, high reflectivity, low optical loss in the visible and ultraviolet regions, good optical conductivity, and a refractive index suitable for use in opto-electronic applications. The materials are confirmed to be mechanically stable under all the hydrostatic pressure values studied. Electrical conductivity, thermal conductivity, and Seebeck coefficient (S ) values of the studied materials increase with an increase in hydrostatic pressure and temperature. The maximum value of S for Rb2SeBr6 is 0.248 x 103 (m V/k), while for Rb2SeCl6, maximum S = 0.175 x 103 (m V/k). The positive values of S suggest that the predominant charge carriers of Rb2SeCl6/Br6 are holes. Also, Rb2SeBr6 has a figure of merit (ZT) value of 3.44, while for Rb2SeCl6, ZT = 1.07. Since the values of ZT are greater than unity, the two double perovskite materials have good ZT values for thermoelectric device engineering. The results also suggest that Rb2SeBr6 is a better thermoelectric material than Rb2SeCl6.


A. Jaffe, Y. Lin & H. I. Karunadasa, “Halide perovskites under pressure: Accessing new properties through lattice compression”, ACS Energy Lett 2 (2017) 1549. https://doi.org/10.1021/acsenergylett.7b00284.

G. Liu, L. Kong, J. Gong, W. Yang, H. K. Mao, Q. Hu, Z. Liu, R. D. Schaller, D. Zhang & T. Xu, “Pressure induced bandgap optimization in lead-based perovskites with prolonged carrier lifetime and ambient retainability”, Adv. Funct. Mater 27 (2017) 1604208. https://doi.org/10.1002/adfm.201604208.

M. Tariq, M. A. Ali, A. Laref & G. Murtaza, “Anion replacement effect on the physical properties of metal halide double perovskite cs2AdInX6(X F,Cl,Br,I)”, Solid state communications 7 (2020) 113929. https://doi.org/10.1016/j.ssc.2020.113929.

S. Ahmad, J. Ur-Rehman, M. Usman, S. M. Ali & M. Ali, “First-principles calculations to investigate effect of pressure on physical properties of LiNbO3 perovskite for photocatalytic application”, Computational and Theoretical Chemistry 1230 (2023) 114354. ISSN 2210-271X. https://doi.org/10.1016/j.comptc.2023.114354.

N. Rahmani, A. Shabani & J. Adam, “A theoretical study of new polar and magnetic double perovskites for photovoltaic applications”, RSC Adv. 12 (2022) 1. https://doi.org/10.1039/d2ra06478b.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. CaR, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal-Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov & P. Umari, “Quantum espresso: a modular and open-source software project for quantum simulations of materials”, J. Phys.: Condens. Matter 21 (2009) 395502. https://doi.org/10.1088/0953-8984/21/39/395502.

P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno, Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. N. C. Cococcioni, I. Carnimeo, A. Dal-Corso, S. de Gironcoli, P. Delugas, J. R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. Y. Ko, F. A. Kokalj, E. K¨uc¸ ¨ukbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H. V. Nguyen, A. Otero-de-la Roza, L. Paulatto, S. Ponce, D. Rocca, R. Sabatini, B. Santra, M. Schlip, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu & S. Baroni, “Advanced capabilities for materials modelling with quantum espresso”, J. Phys.: Condens. Matter 29 (2017) 465901. https://doi.org/10.1088/1361-648X/aa8f79.

H. H. Hegazy, M. Manzoor, W. M. Iqbal, M. Zanib, A. Dahsan & I. Kabil, “Systematically study of optoelectronics and transport properties of chalcopyrite HgAl2X4(X S,Se) compounds for solar cell device applications”, Journal of materials research and technology 19 (2022) 1690. https://doi.org/10.1016/j.mrt.2022.05.115.

H. H. Hegazy, G. M. Mustafa, A. Nawaz, N. A. Noor, A. Dahshan & I. Boukhris, “Tuning of direct bandgap of Rb2ScTlX6(X Cl,Br,I) double perovskites through halide ion substitution for solar cell devices”, journal of materials research and technology 19 (2022) 1271. https://doi.org/10.1016/j.jmrt.2022.05.082.

W. A. Yahya, A. A. Yahaya, A. A. Adewale, A. A. Sholagberu & N. K. Olasunkanmi, “A DFT study of optoelectronic, elastic and thermoelectric properties of the double perovskites Rb2SeX6(X Br,Cl)”, J. Nig. Soc. Phys. Sci. 5 (2023) 1418, https://doi.org/10.46481/jnsps.2023.1418.

S. A. Dar, R. Sharma, V. Srivastava & U. K. Sakalle, “Investigation on the electronic structure, optical, elastic, mechanical, thermodynamic and thermoelectric properties of wide band gap semiconductor double perovskite Ba2InTaO6”, RSC Adv. 9 (2019) 9522. https://doi.org/10.1039/c9ra00313d.

X. Diao, Y. Diao, Y. Tang, G. Zhao, Y. Gu, Q. Xie, Y. Shi, L. Zhang & P. Zhu, “High-throughput screening of stable and efficient double inorganic halide perovskite materials by DFT”, Scientific Reports 12 (2022) 2045. https://doi.org/10.1038/s41598-022-16221-3.

J. Li, L. Sun, X. Cao & J. Chang, “First-principles predictions of structural, mechanical and optoelectronic properties of Se-based double perovskite A2SeX6(A Rb,K;X Cl,Br,I)”, Phys. Chem. C. 127 (2023) 10332. https://doi.org/10.1021/acs.jpcc.3c01097.

D. R. Hamann, M. Schl¨uter & C Chiang, “Norm-conserving pseudopotentials”, Phys. Rev. Lett. 43 (1979) 1. https://doi.org/10.1103/PhysRevLett.43.1494.

J. P. Perdew, K. Burke & M. Ernzerhof, “Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation”, Phys. Rev. B 46 (1992) 6671. https://doi.org/10.1103/physRevB.46.6671.

J. P. Perdew, K. Burke & M. Ernzerhof, “Generalized gradient approximation made simple”, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865.

J. D. Pack & H. J. Monkhorst “Special points for brillouin-zone integrations-a reply”, Phys. Rev. B. Condens Matter Physics 16 (1977) 1748. https://doi.org/10.1103/PhysrevB.16.1748.

C. G. Broyden, “The convergence of a class of double-rank minimization algorithms 1. general considerations”, IMA J. Appl. Math. (Institute Math. Its Appl.) 6 (1970) 76. https://doi.org/10.1093/imamat/6.1.76.

C. G. Broyden, “The convergence of a class of double-rank minimization algorithms: 2. the new algorithm”, IMA J. Appl. Math. (Institute Math. Its Appl.) 6 (1970) 222. https://doi.org/10.1093/imamat/6.3.222.

A. A. Sholagberu, W. A. Yahya & A. A. Adewale,“Pressure effects on the opto-electronic and mechanical properties of the double perovskite Cs2AgInCl6”, Phys. Scr. 97 (2022) 085824. https://doi.org/10.1088/1402-4896/ac831d.

A. A. Adewale, A. Chik, O. k. Yusuff, S. A. Ayinde & Y. K. Sanusi, “First principle calculation of structural, electronic and optical properties of cds and doped Cdx–1AxS(A Co,Fe,Ni) compounds”, Materials Today Communications 26 (2021) 101882. https://doi.org/10.1016/j.mtcomm.2020.101882.

M. Born, K. Huang & M. Lax, “Dynamical theory of crystal Lattice”, Am. J. Phys 23 (1955) 474. https://doi.org/10.1119/1/1934059.

W. Voigt, “A determination of the elastic constants for beta quartz Lehrbuch der kristallphysik (bg teubner leipzig und berlin) 980 s”, Reproduced 40 (1928) 2856. https://doi.org/10.1103.PhysRev.62.395.

A. Reuss, “Berechnung der fliessgrenze von mischkristallen auf grund der plastizit¨atsbedingung f¨ur einkristalle”, ZAMM—Journal of Applied Mathematics and Mechanics/Zeitschrift f¨ur Angewandte Mathematik und Mechanik 9 (1929) 49. http://dx.doi.org/10.1002/zamm.19290090104.

R. Hill, “The elastic behaviour of a crystalline aggregate”, Proceedings of the Physical Society 65 (1952) 349. https://doi.org/10.1088/0370-1298/65/5/307.

D. H. Chung &W. R. Buessem, “The voigt-reuss-hill (VRH) approximation and the elastic moduli of polycrystalline ZnO, TiO2 (rutile), and α Al2O3”, Journal of Applied Physics 39 (1968) 2777. https://doi.org/10.1063/1.1656672.

A. A. Audu, W. A. Yahya & A. A. Abdulkareem, “Ab-initio studies of the sructural, electronic and mechanical properties of Zn1–xCrxTe”, Physics memoir, Journal of theoretical and applied physics 3 (2021) 38. https://physicsmemoir.online.

I. E. Igwe & Y. T. Batsari, “Atomistic simulation of the effect of temperature on mechanical properties of some nano-crystalline metals”, African Scientific Reports 1 (2022) 95. https://doi.org/10.46481/asr.2022.1.2.33.

G. K. Madsen, J. Carrete & M. J. Verstraete, “BoltzTraP2: A program for interpolating band structures and calculating semi-classical transport coefficients”, Comput. Phys. Commun. 231 (2018) 140. https://doi.org/10.1016/j.cpc.2018.05.010.

A. A. Adewale, A. Chik, T. Adam, T. M. Joshua & M. O. Durowoju, “Optoelectronic behavior of ZnS compound and its alloy: A first principle approach”, Materials Today Communications 27 (2021) 102077. https://doi.org/10.1016/j.mtcomm.2021.102077.

M. Nabi & D. C. Gupta, “Potential lead-free small band gap halide double perovskites Cs2CuMCl6(MSb,Bi) for green technology”, Scientific Reports 11 (2021) 12945. https://doi.org/10.1038s41598-021-92443-1.

T. I. Al-Muhimeed, A. I. Aljameel, A. Mera, S. Saad, G. Nazir, H. Albalawi, S. Bouzgarrou, H. H. Hegazy & Q Mahmood, “First principle study of optoelectronic and mechanical properties of lead-free double perovskites Cs2SeX6(XCl,Br,I)”, Journal of Taibah University for Science 16 (2022) 155. https://doi.org/10.1080/16583655.2022.2035927.

M. A. Ali, A. H. Reshak, G. Murtaza, M. AL-Anazy, H. Althib, T. H. Flemban & J. Bila, “Optoelectronic and transport properties of Rb/Cs2TeI6 defective perovskites for green energy applications”, Int. J. Energy Res 7 (2020) 1. https://doi.org/10.1002/er.6378.

N. I. Akpu, K. U. P. Okpechi, E. C. Nwaokorongwu, I. L. Ikhioya, J. C. Onwuzo, L. A. Nnanna & I. I. C. Agbodike, “Impact of temperature difference on the features of spray deposited yttrium doped cobalt selenide (YCoSe) thin films for photovoltaic application”, African Scientific Reports 2 (2023) 143. https://doi.org/10.46481/asr.2023.2.3.143.

F. I. H. Alias, M. H. Ridzwan, M. K. Yaakob, C. W. Loy & Z. Mohamed, “Structural, electronic and optical studies of SrNiTeO double perovskite by firstprinciple DFT - LDA + U calculation”, Journal of Materials Research and Technology 18 (2022) 1623. https://doi.org/10.1016/j.jmrt.2022.03.017.

Q. Mahmood, G. M. Mustafa, M. Morsi, H. Albalawi, T. H. Flemban, M. Hassan, H. Althib, M. I. Khan & T. Ghrib, “Theoretical investigations of optoelectronic and thermoelectric properties of halide based double perovskite halides: K2TeX6”, IOP publishing, Phys. Scr. 96 (2021) 075703. https://doi.org/10.1088/1402-4896/abfba8.

A. B. Siad, M. Biara & M. B. Siad, “Structural mechanical optoelectronic and thermoelectric properties of double perovskite compounds Cs2TeX6(X Br,I) for energy storage applications: First principles investigation”, Journal of Physics and chemistry of solids 152 (2021) 109955. https://doi.org/10.1016/j.jpcs.2021.109955.

A. Menedjhi, N. Bouarissa, S. Saib, M. Boucenna & F. Mezrag, “Structure and optical spectra of double perovskite Cs2AgBiBr6 for solar cells performance”, ACTA Physica Polonica A. 137 (2020) 1. https://doi.org/10.12693/APhysPolA.137.486.

Q. Mahmood, T. Ghrib, A. Rached, A. Laref & M. A. Kamran, “Probing of mechanical, optical and thermoelectric characteristics of double perovskites Cs2GeCl/Br6 by DFT method”, Materials Science in Semiconductor Processing 112 (2020) 105009. https://doi.org/10.1016/j.mssp.2020.105009.

M. K. Zoubir, B. Fadila, B. Keltoum, A. Ibrahim, B. L. Farah, Y. Al-Douri & A. Mohammed, “Structural, electronic and thermodynamic investigation of Ag2GdSi, Ag2GdSn and Ag2GdPb heusler alloys: First-principles calculations”, Materials Testing 63 (2021) 537. https://doi.org/10.1515/mt-2020-0088.

M. A. Shah, M. A. Alam, A. Hossain, M. F. Hossain, M. Nuruzzaman, F. Parvin & M. A. K. Zilani, “Hydrostatic pressure on XLiH3(X Ba,Sr,Ca) perovskite hydrides: An insight into structural, thermo-elastic and ultrasonic properties through first-principles investigation” Solid State Communications 328 (2021) 114222. https://doi.org/10.1016/j.ssc.2021.114222.

N. Erum & A. Z. Iqbal, “Mechanical and magneto-opto-electronic investigation of transition metal based fluoro perovskites: An ab-initio DFT study”, Solid State Communications 07 (2017) 1. http://dx.doi.org/10.1016/j.ssc.2017.07.010.

D. Pettifor, “Theoretical predictions of structure and related properties of intermetallics”, Materials Science and Technology 8 (1992) 345. https://doi.org/10.1179/MST.1992.8.4.345.

S. F. Pugh, “Relations between the elastic moduli and the plastic properties of polycrystalline pure metals”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (1954) 823. https://doi.org/10.1080/14786440808520496.

T. Takeuchi, “Conditions of electronic structure to obtain large dimensionless figure of merit for developing practical thermoelectric materials”, Materials Transactions 50 (2009) 2359. http://dx.doi.org/10.2320/matertrans.M2009143.



How to Cite

Effect of hydrostatic pressure on opto-electronic, elastic and thermoelectric properties of the double perovskites Rb2SeX6(X=Cl,Br): a DFT study. (2024). African Scientific Reports, 3(1), 171. https://doi.org/10.46481/asr.2024.3.1.171




How to Cite

Effect of hydrostatic pressure on opto-electronic, elastic and thermoelectric properties of the double perovskites Rb2SeX6(X=Cl,Br): a DFT study. (2024). African Scientific Reports, 3(1), 171. https://doi.org/10.46481/asr.2024.3.1.171