Temperature-dependent viscometry of baobab pectin (Adansonia digitata L.)


  • Shadreck Muyambo FosField Research & Development Co. (P/L), 25A Scott Road Hatfield, Harare, Zimbabwe; Department of Food Processing Technology, Harare Institute of Technology, Ganges Rd, Box BE 277, Belvedere, Harare, Zimbabwe
  • Jack A. Urombo Mathematical Sciences Department, Harare Institute of Technology, P.O. Box BE277 Belvedere, Harare, Zimbabwe; Department of Mathematics, Amity School of Applied Sciences(ASAS), Amity University Gurugram, Amity Education Valley Gurugram, Manesar, Panchgaon, Haryana 122412, India


Baobab pectin, Viscosity-temperature dependency, Arrhenius parameters, Thermodynamic parameters


This study uses the Arrhenius-type equation and the Frenkel-Eyring equation to evaluate the viscosity-temperature dependency of the baobab pectin (BoP) solution at 278.16-353.16 K. The viscosity parameters (apparent viscosity, ηA and intrinsic viscosity, [η]) were analysed for polymeric systems of WEp (pectin extracted using water), AEp (pectin extracted using acid), and Cp (citrus pectin, a control). A Vibro-viscometer was used to measure ηA, while [η] values were estimated from the Kuwara equation. The viscosity parameters decrease with an increase in temperature, though the effects were more pronounced in WEp than in AEp and Cp. Data from [η] indicated that activation energy Ea was higher for AEp (12.24 kJ/mol) and lower for WEp (10.18 kJ/mol). In contrast, the ηA data had a higher Ea for WEp (21.38 kJ/mol) and a lower Ea for Cp (16.49 kJ/mol). The ηA data showed a non-linear viscosity-temperature relationship, and the Vogel-Fulcher-Tammann-Hesse equation was used instead to relate the temperature dependency of BoP. The flow patterns of all pectin solutions showed positive entropy (ΔS + v ), positive enthalpy (ΔH+ v ), and negative Gibbs free energy (ΔG−v ). This revealed that the flow was disordered, dependent on temperature, and spontaneous. Overall, the viscous flow of WEp was more sensitive and less dependent on temperature compared to AEp and Cp.


B. K. Ndabikunze, B. N. Masambu, B. P. M. Tiisekwa & A. Issa-Zacharia, “The production of jam from indigenous fruits using baobab (Adansonia Digitata L.) powder as a substitute for commercial pectin”, African Journal of Food Science 5 (2011) 168. https://academicjournals.org/journal/AJFS/article-stat/51E20113089

O. A. Patova, A. Luanda, N. M. Paderin, S. V. Popov, J. J. Makangara, S. P. Kuznetsov & E. N. Kalmykova, “Xylogalacturonan enriched pectin from the fruit pulp of Adansonia digitata Structural characterization and antidepressant like effect”, Carbohydrates Polymer 262 (2021) 11746. https://doi.org/10.1016/j.carbpol.2021.117946

K. Alba, V. Offiah, A. P. Laws, K. O. Falade & V. Kontogiorgos, “Baobab polysaccharides from fruits and leaves”, Food Hydrocolloids 106 (2020) 105874. https://doi.org/10.1016/j.foodhyd.2020.105874

S. Damodaran, K. L. Parkin & O. R. Fennema, Fennema’s Food Chemistry, CRC press: Taylor and Francis Group LLC, Boca Raton, United States of America, 2008, pp. 146-147. https://www.academia.edu/8361211/Fennemas Food Chemistry 4th edition pdf

A. A. Sundar Raj, S. Rubila, R. Jayabalan & T. V. Ranganathan, “A Review on Pectin: Chemistry due to General Properties of Pectin and its Pharmaceutical Uses”, Scientific Reports 1 (2012) 2. https://www.researchgate.net/publication/281388262_A_review_on_pectin_Chemistry_due_to_general_properties_of_pectin_and_its_pharmaceutical_uses

A. A. Nour, B. I. Magboul & N. H. Kheiri, “Chemical composition of baobab fruit (Adansonia Digitata L.)”, Food Research Centre, Khartoum North (1980) 1. https://www.doc-developpement-durable.org/file/Culture/Arbres-Fruitiers/FICHES_ARBRES/baobab/Chemical%20composition%20of%20baobab%20fruit%20Adansonia%20digitata.pdf

M. Dimopoulou, K. Alba, I. A. Sims & V. Kontogiorgos, “Structure and rheology of pectic polysaccharides from baobab fruit and leaves”, Carbohydrate Polymers 273 (2021) 118540. https://doi.org/10.1016/j.carbpol.2021.118540

L. M. Nwokocha & P. A. Williams, “Rheological properties of a polysaccharide isolated from Adansonia digitata leaves”, Food Hydrocolloids 58 (2016) 29. https://doi.org/10.1016/j.foodhyd.2016.02.013

I. C. M. Dea & A. Morrison, “Chemistry and interactions of seed galactomannans”, Advances in Carbohydrate Chemistry and Biochemistry 32 (1975) 241. https://doi.org/10.1016/S0065-2318(08)60298-X

M. A. Masuelli,“ Viscometric study of pectin. Effect of temperature on the hydrodynamic properties”, International Journal of Biological Macromolecules 48 (2011) 286. https://doi.org/10.1016/j.ijbiomac.2010.11.014

T. Tanglertpaibul & M. A. Rao, “Intrinsic viscosity of tomato serum as affected by methods of determination and methods of processing concentrates”, Journal of Food Science 52 (1987) 1642. https://doi.org/10.1111/j.1365-2621.1987.tb05895.x

R. Pamies, J. G. Hern´andez Cifre, M. del Carmen Lopez Mart´ınez,& J. de la Torre, “Determination of intrinsic viscosities of macromolecules and nanoparticles. Comparison of single-point and dilution procedures”, Colloid and Polymer Science 286 (2008) 1223.https://doi.org/10.1007/s00396-008-1902-2

F. Behrouzian, S. M. A. Razavi & H. Karazhiyan, “Intrinsic viscosity of cress (Lepidium sativum) seed gum: Effect of salts and sugars”, Food Hydrocolloids 35 (2014) 100. https://doi.org/10.1016/j.foodhyd.2013.04.019

G. A. van Aken, Polysaccharides in Food Emulsions. Food polysaccharides and their applications, Taylor & Francis Group, Boca Raton, United States of America, 2006, pp. 521. https://www.researchgate.net/publication/279724123_Polysaccharides_in_Food_Emulsions

S. Muyambo, I. Chikurunhe, & D. N. Moyo, “Intrinsic Viscosity of Stud Plant Mucilage (Dicerocaryum Zanguebarium): Polymeric Studies at Infinite Dilution”, Journal of Modern Chemistry & Chemical Technology 10 (2019) 28. https://sciencejournals.stmjournals.in/index.php/RRJoFST/article/view/3090

S. M. A. Razavi, T. M. Moghaddam, B. Emadzadeh & F. Salehi, “Dilute solution properties of wild sage (Salvia macrosiphon) seed gum”, Food Hydrocolloids 29 (2012) 205. https://doi.org/10.1016/j.foodhyd.2012.02.020

M. Tahir, R. E. Hincapie, M. Be & L. Ganzer, “A Comprehensive Combination of Apparent and Shear Viscoelastic Data during Polymer Flooding for EOR Evaluations’, World Journal of Engineering and Technology 5 (2017) 585. https://doi.org/10.4236/wjet.2017.54050

P. J. Fellows, Food Processing Technology: Principle and practice, CRC Press, New York, United Sates of America, 2009, pp. 13-17 https://shop.elsevier.com/books/food-processing-technology/fellows/978-1-84569-216-2

C. G. Lopez, R. H. Colby & J. I. B. Cabral, “Electrostatic and hydrophobic interactions in NaCMC aqueous solutions: Effect of degree of substitution”, Macromolecules 51 (2018) 3165. https://doi.org/10.1021/acs.macromol.8b00178

M. Berthelot, “Essaie dune theorie sur la formation des ethers”, Annals de chimie et de physique. T66 (1862) 110. https://www.loc.gov/item/49052172/

J. Belehradek, “Sur la signification des coefficients de temperature”, Protoplasma 7 (1929) 232. https://doi.org/10.1007/BF01612807

M. Rao, “Flow and Functional Models for Rheological Properties of Fluid Foods”, in Rheology of Fluid, Semisolid, and Solid Foods. Food Engineering Series, Springer, Boston MA, United States of America, 2013, pp. 27-61. https://doi.org/10.1007/978-1-4614-9230-6 2

J. H. Van’t Hoff, Studies in Chemical Dynamics, F. Muller & Co, Amsterdam, Netherlands, 1896, pp. 122-126. https://archive.org/details/studiesinchemica00hoffrich

S. Vyazovkin, “Activation energies and temperature dependencies of the rate of crystallization and melting of polymers”, Polymers (2020) 1. https://doi.org/10.3390/polym12051070.

A. Messaadi, N. Dhouibi, H. Hamda, F. B. M. Belgacem, Y. H. Adbelkader, N. Ouerfelli & A. H. Hamzaoui, “A new equation relating the viscosity Arrhenius temperature and the activation energy for some Newtonian classical solvents”, Journal of Chemistry (2015) 1. https://doi.org/10.1155/2015/163262

R. Malviya, S. Jha, N. K. Fuloria, V. Subramaniyan, S. Chakravarthi, K. Sathasivam, U. Kumari, D. U. Porwai., A. Sharma & D. H. Kumar, “Determination of temperature-dependent coefficients of viscosity and surface of Tamarind seeds (Tamatindus indica L.) polymer”, Polymer 13 (2021) 1. https://doi.org/10.3390/polym13040610

R. B. Haj-Kacem, N. Ouerfelli, J. V. Herr´aez, M. Guettari, H. Hamda & M. Dallel, “Contribution to modeling the viscosity Arrhenius-type equation for some solvents by statistical correlations analysis”,Fluid Phase Equilibria 383 (2014) 11. https://doi.org/10.1016/j.fluid.2014.09.023

P. Atkins & J. de Paula, Physical Chemistry, W. H. Freeman, New York, United States of America, 2014, pp. 212-234. https://www.academia.edu/93378803/Peter_Atkins_Julio_de_Paula_Physical_Chemistry_Thermodynamics_Structure_and_Change_Freeman_and_Co_2014

E. Ike, “Arrhenius-type relationship of viscosity as a function of temperature for mustard and cotton seed oils”, International Research Journal of Pure and Applied Physics 9 (2021) 44. https://eajournals.org/irjpap/vol-8-issue-2-2021/arrhenius-type-relationship-of-viscosity-as-a-function-of-temperature-for-mustard-and-cotton-seed-oils/

G. Adam & J. H. H. Gibbs, “On the temperature dependence of cooperative relaxation properties in glass-forming liquids”, Journal of Chemistry and Physics 43 (1965) 139. https://doi.org/10.1063/1.1696442

M. Aniya,& T. Shinkawa, “A model for the fragility of metallic glass forming liquids”, Material Transactions 48 (2007) 1793. https://doi.org/10.2320/matertrans.MJ200737

M. Ikeda & M. Aniya, “Bond Strength-Coordination Number Fluctuation Model of Viscosity: An Alternative Model for the Vogel-Fulcher-Tammann Equation and an Application to Bulk Metallic Glass Forming Liquids”, Materials 3 (2010) 5246-5262. https://doi.org/10.3390/ma3125246

M. P. Cox & E. H. H. Merz, “Correlation of dynamic and steady flow viscosities”, Journal of Polymer Science 28 (1958) 616. http://dx.doi.org/10.1002/pol.1958.1202811812

I. T. S. Li, Hydrophobic Hydration of a Single Polymer, Ph.D. thesis, Department of Chemistry, University of Toronto, Toronto, Canada, 2012. https://tspace.library.utoronto.ca/handle/1807/34783

R. L. Baldwin, “Temperature-dependence of the hydrophobic interaction in protein folding”, Proceedings of the National Academy of Science 83 (1986) 8069. https://doi.org/10.1073/pnas.83.21.8069

M. A. Masuelli, “Mark-Houwink parameters for aqueous soluble polymers and biopolymers at various temperatures”, Journal of Polymer and Biopolymer Physics Chemistry 2 (2014) 37.http://www.sciepub.com/reference/256766

F. Kar & N. Arslan, “Effect of temperature and concentration on viscosity of orange peel pectin solutions and intrinsic viscosity–molecular weight relationship”, Carbohydrate Polymers 40 (1999) 277. https://doi.org/10.1016/S0144-8617(99)00062-4

Z. Zamani & S. M. A. Razavi, “Molecular Parameters and Intrinsic Viscosity of Nettle Seed (Urtica Pilulifera) Gum as a Function of Temperature”, Pre-prints Research Square. https://doi.org/10.21203/rs.3.rs-151482/v1

K. Monkos, “On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach”, Biochimica et Biophysica Acta 1700 (2004) 27. https://doi.org/10.1016/j.bbapap.2004.03.006

Z. K. Muhidinov ,Kh Kh. Avloev, M. T. Norova, A. S. Nasriddinov & D. Kh Khalikov, “Effect of temperature on the intrinsic viscosity and conformation of different pectins”, Polymer Science Series A 52 (2010) 1257. https://doi.org/10.1134/S0965545X10120035

M. Y. Sayah, R. Chabir, H. Benyahia, Y. Rodi Kandri, F. Ouazzani Chahdi, H. Touzani & F. Errachidi, “Yield, Esterification Degree and Molecular Weight Evaluation of Pectins Isolated from Orange and Grapefruit Peels under Different Conditions”, PLoS ONE 11 (2016) 1. https://doi.org/10.1371/journal.pone.0161751

A. Walding, “Pectin rich fruit”, Livestrong, Com, 2011. [Online]. https://www.livestrong.com/

S. Muyambo, “Analysis of the Intrinsic Viscosity Behaviour in Polymer Mixtures of Stud Plant Mucilage (Dicerocaryum zanguebarium) with Carboxymethyl Cellulose and Guar Gum: Synergism at Infinite Dilution”, Research & Reviews: Journal of Food Science & Technology 10 (2021) 1. https://sciencejournals.stmjournals.in/index.php/RRJoFST/article/view/3090

M. A. Masuelli, “Intrinsic Viscosity Determination of High Molecular Weight Biopolymers by Different Plot Methods. Chia Gum Case”, Journal of Polymer and Biopolymer Physics and Chemistry 6 (2018) 13. https://doi.org/10.12691/jpbpc-6-1-2

A-A. A. Abel-Azim, A. M. Atta, M. S. Farahat & W. Y. Boutros, “Determination of intrinsic viscosity of polymeric compounds through a single specific viscosity measurement”, Polymers 39 (1998) 6827–6833. https://doi.org/10.1016/S0032-3861(98)00184-0

A. K. Mahanta & P. K. S. Pattnayak, “Green analytical methods for the determination of intrinsic viscosity of hydroxyl terminated polybutadiene”, Journal of Material and Environmental Science 6 (2015) 2377. https://api.semanticscholar.org/CorpusID:19661982

N. Ouerfelli, M. Bouaziz & J. V. Herraez, “Treatment of ´Herraez equation correlating viscosity in binary liquid mixtures exhibiting strictly monotonous distribution”, Physics and Chemistry of Liquids 51 (2013) 55. https://doi.org/10.1080/00319104.2012.682260

G. Tammann & W. Hesse, “Die Abhangigkeit der Viscosit ¨ at ¨von der Temperature bieunterkuhlten Fl ussigkeiten”, Zeitschrift fur Anorganische und Allgemeine Chemie 156 (1926) 245. https://doi.org/10.1002/zaac.19261560121

I. L. Acevedo,& M. P. Kartz, “Viscosities and thermodynamics of various flows of some binary mixtures at different temperatures”, Solution Chemistry 19 (1990) 1041. https://doi.org/10.1007/BF00650507

M. Sillick & C. M. Gregson, “Viscous fragility of concentrated maltopolymer/ sucrose mixtures”, Carbohydrate Polymers 78 (2009) 879. https://doi.org/10.1016/j.carbpol.2009.07.015

E. Ike & S. C. Ezike, “Estimation of viscosity Arrhenius pre-exponential factor and activation energy of some organic liquids”, International Journal of Recent Research in Physics and Chemical Science 5 (2018) 18. http://docplayer.net/212753187-Estimation-of-viscosity-arrhenius-pre-exponential-factor-and-activation-energy-of-some-organic-liquids.html

V. Jagannadham, “How do we introduce the Arrhenius pre-exponential factor (A) to graduate students?”, Creative Education 2 (2010) 128. http://dx.doi.org/10.4236/ce.2010.12019

H. Eyring & J. E. Hirschfelder, “The Theory of the Liquid State”, Journal of Physical Chemistry 41 (1937) 249. https://doi.org/10.1021/j150380a007

R. C. M. de Paula, S.A. Santana & J. F. Rodriguesa, “Composition and rheological properties of Albizia lebbeck gum exudate”, Carbohydrate Polymers 44 (2001) 133. https://doi.org/10.1016/S0144-8617(00)00213-7

R. de Paula & J. F. E. Rodrigues, “Composition and rheological properties of cashew tree gum, the exudate polysaccharide from Anacardium occidentale L.”, Carbohydrate Polymers 26 (1995) 177. https://doi.org/10.1016/0144-8617(95)00006-S

G. T. Mezger, The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers, Elsevier, New York, United States of America, 2006, pp. 19-78. https://shorturl.at/zKRU6

Z. Berk, Food Process Engineering and Technology, Elsevier Inc, New York, United States of America, 2009, pp. 115-124. https://www.sciencedirect.com/book/9780123736604/food-process-engineering-and-technology

M. Shaikh, M. Shafique, B. R. Aggarwal & M. Farooqui, “Density, viscosity, and activation parameters of viscous flow for cetrimide in ethanol + water system at 301.5 K”, Rasayan Journal of Chemistry 4 (2011) 172. https://www.researchgate.net/publication/279558087_Density_viscosity_and_activation_parameters_of_viscous_flow_for_cetrimide_in_ethanol_water_system_at_3015_K

C-W. Liew & S. Ramesh, “Electrical, structural, thermal, and electrochemical properties of corn starch-based biopolymer electrolytes”, Carbohydrate Polymers 124 (2015) 222. https://doi.org/10.1016/j.carbpol.2015.02.024

T. Sogabe, A. E. Granados, S. Fong-IN & K. Kawai, “Effect of Glass Transition Temperature on the Viscosity of Carbohydrate Solutions and Fruit Juices as Functions of Temperature and Solute Concentration”, Cryobiology and Cryotechnology 67 (2021) 103. https://doi.org/10.20585/cryobolcryotechnol.67.2 103

C. A. Angell, R. D. Bressel, J. L. Green, H. Kanno, M. Oguni & E. J. Sare, “Liquid fragility and the glass transition in water and aqueous solutions”, Journal of Food Engineering 22 (1994) 115. https://doi.org/10.1016/0260-8774(94)90028-0

F. Frank, Water: A matrix of life, Royal Society of Chemistry, Cambridge, United Kingdom, 2000, pp. 15-29. https://www.perlego.com/book/786943/water-a-matrix-of-life-pdf

Y. H. Roos & M. Karel, “Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions”, Journal of Food Science 56 (1991) 1676.https://doi.org/10.1111/j.1365-2621.1991.tb08669.x

C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan & S. W. Martin, “Relaxation in glass forming liquids and amorphous solids”, Journal of Applied Physics 88 (2000) 3113. https://doi.org/10.1063/1.1286035

J. F. Mano & E. Pereira, “Data analysis with the Vogel-Fulcher-Tammann-Hesse Equation”, Journal of Physical Chemistry A 108 (2004) 10824. https://doi.org/10.1021/jp0484433

A. K. Doolittle, “Studies in Newtonian Flow. I. The Dependence of the viscosity of liquids on temperature”, Journal of Applied Physics 22 (1951) 1031. https://doi.org/10.1063/1.1700096

M. H. Cohen & G. S. Grest, “Liquid-glass transition, a free-volume approach”, Physical Review B 20 (1979) 1077. https://doi.org/10.1103/PhysRevB.20.1780

F. Salehi & M. Kasheninejad, “Kinetics and Thermodynamics of Gum Extraction from Wild Sage Seed”, International Journal of Food Engineering 10 (2014) 625. https://doi.org/10.1515/ijfe-2014-0079

N. O. Eddy, I. Udofia, A. Uzairu, A. O. Odiongenyi, C. Obadimu “Physicochemical, Spectroscopic and Rheological Studies on Eucalyptus Citriodora (EC) Gum”, Journal of Polymer and Biopolymer Physics Chemistry 52(2015) 5220. http://www.sciepub.com/abstract/abstract.aspx?id=jpbpc&num=1554

F. Salehi, M. Kashaninejad, A. Tadayyon & F. Arabameri, “Modeling of extraction process of crude polysaccharides from Basil seeds (Ocimum basilicum l.) as affected by process variables”, Journal of Food Science and Technology 52 (2015) 5220. https://doi.org/10.1007/s13197-014-1614-1

N. Ahmad, A. Saeed, K. Ahad & M. S. Khan, “Effect of temperature of the viscosity of dilute polyelectrolyte solutions”, Journal of Chemical Society of Pakistan 16 (1994) 91. https://jcsp.org.pk/issueDetail.aspx?aid=628e148a-29e6-44f7-8138-effe984c8b8e

N. O. Eddy, P. O. Ameh, C. E. Gimba & E. E. Ebenso, “Rheological modelling and characterization of Ficus platyphylla gum exudates”, Journal of Chemistry (2013) 1. https://doi.org/10.1155/2013/254347

W. Kauzman, “Some factors in the interpretation of protein denaturation”, Advance in Protein Chemistry (1959) 51. https://doi.org/10.1016/s0065-3233(08)60608-7

S. Amin, G. Hawash, E. Diwani & El Rafei, “Kinetics and thermodynamics of oil extraction from jatropha curcas in aqueous acidic hexane solutions”, Journal of American Science 6 (2010) 1. https://scirp.org/reference/referencespapers.aspx?referenceid=1558944

D. J. Winzor & C. M. Jackson, “Interpretation of the temperature dependence of equilibrium and rate constants”, Journal of Molecular Recognition 19 (2006) 389. https://doi.org/10.1002/jmr.799



How to Cite

Temperature-dependent viscometry of baobab pectin (Adansonia digitata L.). (2024). African Scientific Reports, 3(1), 146. https://doi.org/10.46481/asr.2024.3.1.146




How to Cite

Temperature-dependent viscometry of baobab pectin (Adansonia digitata L.). (2024). African Scientific Reports, 3(1), 146. https://doi.org/10.46481/asr.2024.3.1.146