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Abstract

A deterministic mathematical model is proposed and analyzed to study the transmission dynamics of Varroosis in honeybee colony
with interventions. The study combined both treatment and biocontrol strategy on curbing the menace of Varroosis on honey-
bee colony. As such, the study established the existence of the most important four steady states that include: disease-free and
infestation-free, infestation with virus-free Varroa-mites, infestation with virus-carrying Varroa-mites and endemic steady state.
Moreover, the study established the existence of backward bifurcation and sensitivity analysis of the model was performed. Corre-
spondingly, the analysis of the model reveals that, ineffective treatment can induce backward bifurcation. Furthermore, the study
results indicated that, when treatment is 100% effective, the disease-free and infestation-free steady state is globally asymptotically
stable for R0 < 1, whereas for R0 > 1the global stability of the endemic steady state is proved only on a special case.
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1. Introduction

Honeybee has been substantially influencing modern agricultural production through pollination processes in sus-
taining ecosystem. As such, the majority of food crops consumed by human depend largely on honeybees’ pollination
[1]. In addition, the generous contributions of honeybees could not be over-emphasizing in producing honey, beeswax,
and other products which are used for vast purposes.
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Honeybee population is confronted increasingly with enormous challenges extending from diseases, predators,
parasitic Varroa-mite, viruses, brood diseases, pesticides, inadequate nutrition, climate & seasonal changes and the
stresses of moving colonies for crop pollination [2-4].

Varroa-mite (Varroa-destructor) is an ectoparasite that attacks honeybee colony. It infests and transmits pathogens
(viruses) via vertically or horizontally within and between colonies. In a nutshell, Varroa-mite feeds on honey-
bee body, reproducing and surviving on brood cells and suppressing honeybee immunity which eventually results
to death. Moreover, viral infection spreads via feeding process when honeybee contacted with contaminated uten-
sils or a Varroa-mite carrying virus feeds on an uninfected honeybee, it might release the virus into the honeybee’s
haemolymph and a virus-free Varroa-mite feeds on an already infected honeybee, it can acquire the virus [5-8].

Interventions such as biological, chemical, mechanical and heating methods have long been put to use to curb
the menace of Varroosis as studied by [9-11]. Furthermore, mathematical models were developed and studied on the
dynamics of Varroa-mite infestation and vectored disease transmission into honeybee population. Also, [12] examined
honeybee-mite interactions in the presence of migration effects on their population dynamics. A mathematical model
studied and analyzed on honeybee, Varroa-mite, and Acute honeybee paralysis virus interactions with seasonality
[13]. Bifurcation analysis is one of focus of this study which prompted to reviewing [14], whose study investigated
the existence of bifurcation on the transmission dynamics of HIV/AIDS on CD count. Additionally, a study proposed
a mathematical model of Varroa-mite and the Acute Bee Paralysis Virus (ABPV), in which the honeybee population
is divided into hive bees and forager bees based on tasks performed in the colony [15]. In short, gargantuan models
were developed on honeybee such includes: [16-19] and among others.

This study is committed to extending the model developed due to [11] by remedying the model shortfalls. Their
model didn’t consider Varroa-mite population (virus-free Varroa-mite and Varroa-mite carrying virus). Similarly,
control strategies using treatment and biocontrol agent (Pseudoscorpions) for Varroosis were not addressed. Hence,
this study incooperated these components in order to have a model mimicking real life phenomenon and reducing
the impact of Varroosis on honeybee colony. It also aimed to investigate existence of bifurcation, global stability and
sensitivity analysis of the model.

2. Methodology

2.1. Model formulation

The total populationN(t)of honeybee, at time t, is divided into six (6) mutually exclusive compartments, namely:
Susceptible honeybee S (t), honeybee infested by virus-free Varroa-mite M(t), honeybee infested by Varroa-mite carry-
ing virus I(t), Population of virus-free Varroa-mite V f (t), Population of Varroa-mite carrying virusVv(t)and Population
of biocontrol agent AB(t). Thus, N(t) = S (t) + M(t) + I(t)

It is assumed that infested and infected honeybee has (Nm andNi) a shorter life span than healthy beesNs. Also,
assuming that Varroa-mites have higher interaction with broods and hives than forager and that rate of disinfestation in
honeybee depends on its state of health, hence;α1 > α2. It is assumed that the biocontrol agent feeds on both virus-free
and virus-carrying varro-mite, the population growth for biocontrol agent is assumed to be logistic, the recruitment
rate of brood population is assumed to be constant, the population growth for Varroa-mite is assumed to be logistic
and the carrying capacity for the mite changes with host (honeybee) population size and natural death rate for all the
populations is assumed to be constant. Infection induced death rate for all the populations is assumed to be constant.
Also, it is only a horizontal transmission mode is assumed and Varroa-mites carrying virus is constantly recruited into
the colony.

2.2. Model description

The model describes the interaction between honeybee population, Varroa-mite population and population of bio-
control agent in a single honeybee colony. The model provides control strategies that minimize the effects of both
infestation and infection. The population of susceptible honeybee S (t)is naturally recruited at the rateA, disinfestation
rate α1andα2, treatment rateπfrom bothM(t) and I(t)respectively. It decreases by transmission rate of infestation by
virus-free Varroa-miteβ1. The population of honeybee infested by virus-free Varroa-mite M(t) grows by the rate of in-
festation by virus-free Varroa-mite β1and decline by rate of infestation by Varroa-mite carrying virusβ2, disinfestation
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Table 1. State Variables
Symbol Descriptions
S (t) Susceptible honeybee at time t
M(t) Honeybee infested by virus-free Varroa-mite at time t
I(t) Honeybee infested by Varroa-mite carrying virus at time t
V f (t) Population of virus-free Varroa-mite at time t
Vv(t) Population of Varroa-mite carrying virus at time t
AB(t) Population of biocontrol agent at time t
Ns Total subpopulation of healthy honeybee
Nm Total subpopulation of honeybee infested by virus-free Varroa-mite
Ni Total subpopulation of honeybee infected by Varroa-mite carrying virus
N Total population of honeybee

Table 2. Parameters
Symbol Descriptions
β1 transmission rate of infestation by virus-free Varroa-mite
β2 transmission rate of infestation by virus-carrying Varroa-mite
α1 Disinfestation rate for honeybees infested by virus-free Varroa-mite
α2 Disinfestation rate for honeybees infested by virus-carrying Varroa-mite
d Natural death rate for all the populations of honeybees
δ Infection induced death rate for all the populations of honeybees
τ Intrinsic growth rate of biocontrol agent
γ Intrinsic growth rate of Varroa-mite
k Environmental carrying capacity for biocontrol agent
Q Environmental carrying capacity for Varroa-mite
η1 Rate at which virus-free Varroa-mite acquires virus
η2 Rate at which virus-carrying Varroa-mite loss it to the host healthy bees
η3 Constant recruitment rate of Varroa-mite carrying virus into the colony
C1 Conversation coefficient of virus-free Varroa-mite to bio-agent
C2 Conversation coefficient of virus-carrying Varroa-mite to bio-agent
µv Natural death rate for the populations of Varroa-mite
µ Natural death rate for the population of biocontrol agent
π Treatment using Thymol powder
A Recruitment rate of healthy bees in the colony

at the rateα1, treatment at rateπ and natural death ratedrespectively. The population of honeybee infested by Varroa-
mite carrying virus I(t) grows when Varroa-mite carrying virus infested on both susceptible honeybee and honeybee
infested by virus-free Varroa-mite at the rateβ1 andβ2respectively. It declines by disinfestation at rateα2, treatment
at rateπ, natural death ratedand infection induced death δ respectively. The population of virus-free Varroa-mite V f

naturally grows at the rate γ
(
1 − V f

Q(N)

)
and get decline by conversion coefficient of biocontrol agent and its natural

death at rate C1and µvrespectively. The population of Varroa-mite carrying virus Vv naturally grows by acquiring
the virus at rate η1, grow by constant recruitment into a colony at η3and get decline by losing the virus to healthy
honeybee at η2, conversion coefficient of biocontrol agent and its natural death at rate C2and µvrespectively. The
population of biocontrol agent (pseudoscorpion) naturally grows at rate τ

(
1 − AB

k

)
and conversion coefficients at rate

C1andC2respectively. It declines by natural death at rateµ.

2.3. State variables and parameters

The state variables and parameters of the model are presented in Table 1 and Table 2 respectively:
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2.4. Model equations

Ṡ (t) = A − β1S
(
V f + Vv + M + I

)
+ (α1 + π) M + (α2 + π) I − dS (1)

Ṁ(t) = β1S
(
V f + M

)
− β2M (Vv + I) − (α1 + π + d) M (2)

İ(t) = β1S (Vv + I) + β2M (Vv + I) − (α2 + π + d + δ) I (3)

V̇ f (t) = γV f

(
1 −

V f

Q(N)

)
− (C1AB + µv) V f (4)

V̇v(t) = η1V f
Ni

N
− η2Vv

Ns

N
+ η3 − (C2AB + µv) Vv (5)

ȦB(t) = τAB

(
1 −

AB

k

)
+

(
C1V f +C2Vv

)
AB − µAB (6)

With initial conditionsS (0) ≥ 0, M(0) ≥ 0,I(0) ≥ 0, V f (0) ≥ 0, Vv(0) ≥ 0 and AB(0) ≥ 0

3. Model Analysis

3.1. Existence of the steady states of the model

The steady states of the model are established, when the RHS of the equation (1)-(6) is set to zero and eventually
solved.

3.1.1. Disease-free and infestation-free steady state
The model has a unique disease-free and infestation-free steady state given as

E∗1 (S ∗, 0, 0, 0, 0, 0) = E∗1
(A

d
, 0, 0, 0, 0, 0

)
(7)

3.1.2. Infestation with virus-free Varroa-mites steady state
In this steady state, susceptible honeybees are infested with virus-free Varroa-mite only. Then,

I = Vv = AB = 0 (8)

Substituting equation (8) in to the system (1)-(6), we have:
S ∗ = A1+

√
A2

2β1γdN , M∗ = B1+
√

A2
2β1γdN and V∗

f
=

Q(γ−µv)
γN

For positive steady state, γ > µv holds.
Where:

A1 = Aβ1γN + γd2N + α1γdN + πγdN + β1γdQ − β1dµvQ

A2 =
(
Aβ1γN + γd2N + (α1 + π)γdN + β1dQ(γ − µv)

)2
− 4Aβ1γ

2dN2(α1 + d + π)

B1 = Aβ1γN − γd2N + α1γd(−N) − πγdN − β1γdQ + β1dµvQ

Thus, we obtain the infestation with virus-free Varroa-mite steady state given as

E∗
2

(
S ∗,M∗, 0,V∗f , 0, 0

)
= E∗

2

(
A1 +

√
A2

2β1γdN
,

B1 +
√

A2

2β1γdN
, 0,

Q(γ − µv)
γN

, 0, 0
)

(9)
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3.1.3. Infestation with virus-carrying Varroa-mites steady state
In this steady state, susceptible honeybees are infested with virus-carrying Varroa-mites only. Then,

M = V f = AB = 0 (10)

Substituting equation (10) in to the system of equation (1)-(6), we have:
S ∗ = A1+

√
A2

2βd(µvN+η2Ns)
, I∗ = − B1+

√
A2

2β(d+δ)(µvN+η2Ns)
and V∗v =

Nη3
µvN+η2N2

Where:
A1 = (µvN + η2Ns)(Aβ + d(α2 + d + δ + π)) + βNη3(d + δ),

A2 = 2βNη3(d+ δ)(µvN + η2Ns)(Aβ+ d(α2 + d+ δ+ π))+ (µvN + η2Ns)2(Aβ− d(α2 + d+ δ+ π))2 + β2N2η3
2(d+ δ)2B1

= (µvN + η2Ns)(d(α2 + d + δ + π) − Aβ) + βNη3(d + δ)

Thus, we obtain the infestation with virus-carrying Varroa-mite steady state given as:

E∗
3

(
S ∗, 0, I∗, 0,V∗v , 0

)
= E∗

3

 A1+
√

A2
2βd(µvN+η2Ns)

, 0, − B1+
√

A2
2β(d+δ)(µvN+η2Ns)

, 0, Nη3
µvN+η2N2

, 0
0

 (11)

3.1.4. Existence of the endemic steady state and backward bifurcation
In this steady state, there exist all the population of honeybee, virus-free Varroa-mite, virus-carrying Varroa-mite

and biocontrol agent.
Let E∗8 =

(
S ∗,M∗, I∗,V∗f ,V

∗
v , A

∗
B

)
be any arbitrary steady state of the model (1)-(6). Further, let

λ∗ = β1S ∗
(
V∗f + V∗v + M∗ + I∗

)
= β1S ∗

(
V∗f + M∗

)
+ β1S ∗

(
V∗v + I∗

)
(12)

Equation (12) is associated with forces of infestation and infection at steady state. Setting the right hand side of the
model (1)-(6) to zero and solve for the state variables (non-zero solutions). We have:

S ∗ = 1
dw3

(A1 + λA10 + A5)2 − A7)
M∗ = 1

2β2w2
(A15 + A14)2

I∗ = 1
w3

(
A19 + λ

1
2β2

A18

)2

V∗f =
1

C2
1kNQ−γr

(
A20 +

√
A21

)
V∗v =

1
2γC2

2k

(
A22 +

√
A21

)
A∗B =

1
C2

1kNQ−γr

(
A23 +

√
A21

2C2

)


(13)

Substituting (13) into the force of infestation and infection defined in (12), so that the non-zero (endemic) steady states
of the model (12) satisfy equation (14). In addition, from equation (14) we obtained λ∗ = 0as one of the solutions (that
corresponds to disease-free and infestation-free steady state) and the core quartic polynomial corresponds to endemic
steady state.

λ∗
(
a1λ

∗4 + a2λ
∗3 + a3λ

∗2 + a4λ
∗ + a5

)
= 0 (14)

Where:

a1 =
A2

10D2

w2
, a2 =

A2
10

2β2w2
, a3 =

A2
10D7D6D2

2

w3
, a4 =

D6

2β2w3
, a5 = D7D6,D1 = A1 + A5,D2 = A19 +

1
2β2w2

A18,

D3 = (A15 + A14)2 ,D4 =
(
A20 +

√
A21

)
,D5 =

(
A22 +

√
A21

)
,D6 =

β1

dw3
+D2

1
−A7,D7 =

D2
2 + D3 + D4 + D5

2dβ2w3γC2
2k

(
C2

1kNQ − γr
) ,

5
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A1 = −Aw3 −
rw1w3

4C2
+
µw1w3

4C2
−

C1NQw1w3

4C2
+

rw0w2
3

4C2w2
−
µw0w2

3

4C2w2
+

C1NQw0w2
3

4C2w2
−

C1NQw1w3w4

4γC2

+
C1NQw0w2

3w4

4γC2w2
−

rw1w3w5

4C2
2k

−
C2

1NQw1w3w5

4γC2
2

+
rw0w2

3w5

4C2
2kw2

+
C2

1NQw0w2
3w5

4γC2
2w2

+
rw0w2

3µv

4C2
2kw2

−
rw1w3µv

4C2
2k

−
w1w3

4γC2
2k
+

C2
1NQw0w2

3µv

4γC2
2w2

−
C2

1NQw1w3µv

4γC2
2

+
C1NQw1w3µv

4γC2
−

C1NQw0w2
3µv

4γC2w2
−

w0w2
3

2β2
+

w1w2w3

2β2

A2 =

(
w3 −

w1

2
−

w0w3

2w2

)
,

A3 = 4γC2
2k

(
C2

1η3kNQ −C1kNQrw4 +C1kµNQw4 − NQrw4µv + γNQrw4 + γη3r
)

+
(
γC2kµ − γC2C1kNQ −C2

1kNQµv +C2C1kNQµv +C2
1(−k)NQw5 −C2C1kNQw4 − γC2kr − γrµv − γrw5

)2
+

w0w2
3

4γC2
2kw2

A4 = 4γC2
2k

(
C2

1η3kNQ −C1kNQrw4 +C1kµNQw4 − NQrw4µv + γNQrw4 + γη3r
)

+
(
γC2kµ − γC2C1kNQ −C2

1kNQµv +C2C1kNQµv +C2
1(−k)NQw5 −C2C1kNQw4 − γC2kr − γrµv − γrw5

)2

A5 =
1

2β2
w1
√
− 4β2w2w3

+


−w2w3 − 2β2β2 +

1
2γC2

2k w3β2

(
γC2kr − γC2kµ + γC1C2kNQ +C1C2kNQw4 + γrw5 +C2

1kNQw5 + γrµv

)
+C2

1kNQµv −C1C2kNQµv

+
√

((
γC2kµ − γC2C1kNQ −C2

1kNQµv +C2C1kNQµv +C2
1(−k)NQw5 −C2C1kNQw4 − γC2kr − γrµv − γrw5

)2

4γC2
2k

(
C2

1η3kNQ −C1kNQrw4 +C1kµNQw4 − NQrw4µv + γNQrw4 + γη3r
)


A6 =

−2β2 +
A8

2γC2
2k
− w2w3

2

− 4β2w2w3

A7 =
w0w3

2β2w2

√
A6

A8 = β2w3

(
−γC2kµ + γC2C1kNQ +

√
A9 +C2

1kNQµv −C2C1kNQµv +C2
1kNQw5 +C2C1kNQw4 + γC2kr + γrµv + γrw5

)
A9 = 4γC2

2k
(
C2

1η3kNQ −C1kNQrw4 +C1kµNQw4 − NQrw4µv + γNQrw4 + γη3r
)

+
(
γC2kµ − γC2C1kNQ −C2

1kNQµv +C2C1kNQµv +C2
1(−k)NQw5 −C2C1kNQw4 − γC2kr − γrµv − γrw5

)2

A10 = A2
√

A3
√

A4

A11 = w2w3 + 2β2 −
1

2γC2
2k

w3β2

(
γC2kr − γC2kµ + γC1C2kNQ +C1C2kNQw4 + γrw5 +C2

1kNQw5 + γrµv

+C2
1kNQµv −C1C2kNQµv+

A12 = 4γC2
2k

(
C2

1η3kNQ −C1kNQrw4 +C1kµNQw4 − NQrw4µv + γNQrw4 + γη3r
)

+
(
γC2kµ − γC2C1kNQ −C2

1kNQµv +C2C1kNQµv +C2
1(−k)NQw5 −C2C1kNQw4 − γC2kr − γrµv − γrw5

)2

6
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A13 = −C2
1kNQµv +C2C1kNQµv +C2

1(−k)NQw5 −C2C1kNQw4 + γC2C1Q − γrµv − γrw5

+4γC2
2k

(
C2

1η3kNQ −C1kNQrw4 +C1kµNQw4 − NQrw4µv + γNQrw4 + γη3r
)

A14 = −w2w3 − 2β2 +
1

2γC2
2k

w3β2

(
γC2kr − γC2kµ + γC1C2kNQ +C1C2kNQw4 + γrw5 +C2

1kNQw5 + γrµv

+C2
1kNQµv −C1C2kNQµv +

√
((γC2kµ − γC2kr − kN + A18

)
A15 =

(
A11 +

√
A12

)
+
√

(−4β2w2w3 + (A13 )2
)

A16 = −
rw3µv

4C2
2k −

rw3w5

4C2
2k −

w3

4γC2
2k −

C2
1 NQw3µv

4γC2
2
+

C1NQw3µv
4γC2

−
C2

1 NQw3w5

4γC2
2
−

C1NQw3w4
4γC2

−
C1NQw3

4C2
−

rw3
4C2

+
µw3
4C2
−
λ1
2 −

λ2
2 +

w2w3
2β2

A17 = 4γC2
2k

(
C2

1η3kNQ −C1kNQrw4 +C1kµNQw4 − NQrw4µv + γNQrw4 + γη3r
)

+
(
γC2kµ − γC2C1kNQ −C2

1kNQµv +C2C1kNQµv +C2
1(−k)NQw5 −C2C1kNQw4 − γC2kr − γrµv − γrw5

)2

A18 =
√

(
−4β2w2w3 +

(
−w2w3 − 2β2 +

1
2γC2

2k w3β2

(
γC2kr − γC2kµ + γC1C2kNQ +C1C2kNQw4 + γrw5
+C2

1kNQw5 + γrµv + C2
1kNQµv −C1C2kNQµv

)
+
√

((
γC2kµ − γC2C1kNQ −C2

1kNQµv +C2C1kNQµv +C2
1(−k)NQw5 −C2C1kNQw4 − γC2kr − γrµv − γrw5

)2

+4γC2
2k

(
C2

1η3kNQ −C1kNQrw4 +C1kµNQw4 − NQrw4µv + γNQrw4 + γη3r
)

A19 = A16
√

A17

A20 = γ(−N)Qr + 1
2C1kNQr − 1

2C1kµNQ − 1
2C2

1kN2Q2 −
C2

1kN2Q2w4

2γ −
C1NQrw5

2C2
−

C3
1kN2Q2µv

2γC2
+

C2
1kN2Q2µv

2γ

+
C3

1kN2Q2w5

2γC2
−

CNQ
2γC2
−

C1NQrµv
2C2

+ NQrµv

A21 = 4γC2
2k

(
C2

1η3kNQ −C1kNQrw4 +C1kµNQw4 − NQrw4µv + γNQrw4 + γη3r
)

+
(
γC2kµ − γC2C1kNQ −C2

1kNQµv +C2C1kNQµv +C2
1(−k)NQw5 −C2C1kNQw4 − γC2kr − γrµv − γrw5

)2

A22 = γC2kr − γC2kµ + γC1C2kNQ +C1C2kNQw4 + γrw5 +C2
1kNQw5 + γrµv +C2

1kNQµv −C1C2kNQµv

A23 = −
1
2γkr+ γkµ2 −

1
2γC1kNQ+ 1

2C1kNQw4+
γrw5
2C2
+

C2
1kNQw5

2C2
+ 1

2C1kNQµv+
γrµv
2C2
+

C2
1kNQµv

2C2
w0 = (α1 + π), w1 = (α2 + π),

w2 = (α1 + π + d), w3 = (α2 + π + d + δ), w4 = η1
Ni
N , w5 = η2

Ns
N

Hence, λ∗1 = β1S ∗
(
V∗f + M∗

)
and λ∗2 = β1S ∗

(
V∗v + I∗

)
are forces of infestation and infection respectively.

It follows that from equation (14) a1 > 0 (since all the model parameters are non-negative). Furthermore, a5 > 0
whenever R0 < 1. Thus, the number of positive real roots of the polynomial (14) can depends on the sign ofa2,
a3anda4. This can be analyzed using the Descartes rule of sign on quartic polynomial f (x) = a1x4 + a2x3 + a3x2 +

a4x + a5, given in (14) with(x = λ∗).
The various possibilities for the roots of f (x)are tabulated in Table 3.
The results of theorem 1 is deduced from the various possibilities highlighted in Table 3.
Theorem 1 of the model (1)-(6) claimed the following results:

1. has a unique endemic steady state if R0 > 1and whenever cases 1, 2, 3 and 6 of Table 3 are satisfied

2. could have more than one endemic steady state if and whenever cases 4, 5, 7 and 8 of Table 3 are satisfied

3. could have 2 or more endemic steady states if R0 < 1 and whenever cases 2-8 of Table 3 are satisfied

The existence of multiple endemic steady states of the model (1)-(6) when R0 < 1 (as shown on Table 3) suggests
the possibility of backward bifurcation to exist which is similar to [20].

Corollary 1 The model (1)-(6) undergoes backward bifurcation at R0 < 1 from the possibilities shown in table 3
Theorem 2 The model (1)-(6) has a backward bifurcation at R0 < 1 if and only if case ii and Case iii hold.
Proof
To show the existence of backward bifurcation in model (1)-(6) at R0 < 1 if and only if case ii and Case iii hold,

center manifold theorem is used as in [21]
7
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Table 3. Number of possible positive real roots of f (x) for R0 < 1and R0 > 1
Cases a1 a2 a3 a4 a5 R0 Number of sign

change
Number of possible real roots
(endemic steady state)

1 + + + + + R0 < 1 0 0
+ + + + - R0 > 1 1 1

2 + - - - + R0 < 1 2 0,2
+ - - - - R0 > 1 1 1

3 + + - - + R0 < 1 2 0,2
+ + - - - R0 > 1 1 1

4 + - + - + R0 < 1 4 0,2,4
+ - + - - R0 > 1 3 1,3

5 + - - + + R0 < 1 2 0,2
+ - - + - R0 > 1 3 1,3

6 + + + - + R0 < 1 2 0,2
+ + + - - R0 > 1 1 1

7 + + - + + R0 < 1 2 0,2
+ + - + - R0 > 1 3 1,3

8 + - + + + R0 < 1 2 0,2
+ - + + - R0 > 1 3 1,3

Consider model (1)-(6)
dX
dt
= G (X, φ) (15)

Where φ is the bifurcation parameter and G is a continuously differentiable at least twice (both in x and φ).
Using the centre manifold theory, the following change of variables is made by denoting S = x1, M = x2, I = x3,

V f = x4, Vv = x5 and AB = x6. The vector notation is given byX = (x1, x2, x3, x4, x5, x6)T . Therefore, the model is
written in a vector form as dX

dt = G = (g1, g2, g3, g4, g5, g6)T such that

ẋ1(t) = A − β1x1 (x4 + x5 + x2 + x3) + (α1 + π) x2 + (α2 + π) x3 − dx1
ẋ2(t) = β1x1 (x4 + x2) − β2x2 (x5 + x3) − (α1 + π + d) x2
ẋ3(t) = β1x1 (x5 + x3) + β2x2 (x5 + x3) x2 − (α2 + π + d + δ) x3

ẋ4(t) = γx4

(
1 − x4

Q(N)

)
− (C1x6 + µ) x4

ẋ5(t) = η1x4
Ni
N − η2x5

Ns
N + η3 − (C2x6 + µ) x5

ẋ6(t) = rx6

(
1 − x6

k

)
+ (C1x4 +C2x5) x6 − µx6


(16)

Letβ1denote a bifurcation parameter such that β1 = β
∗
1. The system is linearized at the disease-free and infestation-free

steady stateE∗1. Given the reproduction numbers
R01 =

Aβ1
d(α1+π+d) , R02 =

Aβ1
d(α2+π+d+δ) and Max (R01,R02). Hence, the maximum between the two reproduction num-

bers, is given in equation (17).

R01 =
Aβ1

d (α1 + π + d)
(17)

Where R01 = 1is the bifurcation point from equation (17), we have:

β∗1 =
d (α1 + π + d)

A
(18)

8
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At the disease-free and infestation-free steady state, the Jacobian is given as

J
(
E∗1

)
=



−d −b1 b4 −β1
A
d −β1

A
d 0

0 b2 0 β1
A
d 0 0

0 0 b3 0 β1
A
d 0

0 0 0 b5 0 0
0 0 0 η1

Ni
N b6 0

0 0 0 0 0 b7


(19)

Let’s denote: b1 = β1
A
d +(α1 + π), b2 = β1

A
d −(α1 + π + d), b3 = β1

A
d −(α1 + π + d + δ),b4 = β1

A
d +(α2 + π), b5 = γ−µ,

b6 = −
(
η2

Ns
N + µ

)
and b7 = γ − µ

The linearized system has a hyperbolic steady state (that is a linearized system has a simple zero eigenvalue and
all other eigenvalues have negative real parts. Hence, the center manifold theory can be applied to the model. Next,
we evaluate the left and right eigenvector which are associated with zero as a simple eigenvalue of equation (19).
Suppose, ω = (ω1, ω2, ω3, ω4, ω5, ω6)T are to be the right eigenvector associated with the eigenvalue zero, then the
following equations are obtained

−dω1 − b1ω2 + b4ω3 − β1
A
dω4 − β1

A
dω5 = 0

b2ω2 + β1
A
dω4 = 0

b3ω3 + β1
A
dω5 = 0

b5ω4 = 0
η1

Ni
N ω4 + b6ω5 = 0

b7ω6 = 0


(20)

Getting the solution of equations (20), we have:
ω4 = ω6 = 0, ω1 = β1

A
dω5, ω2 = −

β1A
b1dω5, ω3 = −

β1A
b3dω5 andω5 = ω5 f ree

Furthermore, the system of equation (19) with β∗1as a bifurcation parameter has simple zero eigenvalues. Using the
center manifold theory to analyzed the system nearβ∗1, the Jacobian matrix nearβ∗1 has a left eigenvectors associated
with the zero eigenvalues given by v = (v1, v2, v3, v4, v5, v6)for the dynamical system (19). Solving the left eigenvector
given by v = (v1, v2, v3, v4, v5, v6)and satisfyingw.v = 1, we take the transpose of the system (20) to obtain below:

[
JE∗1

]T
=



−d 0 0 0 0 0
b1 b2 0 0 0 0
b4 0 b3 0 0 0
−β1

A
d β1

A
d 0 b5 η1

Ni
N 0

−β1
A
d 0 β1

A
d 0 b6 0

0 0 0 0 0 b7





v1
v2
v3
v4
v5
v6


=



0
0
0
0
0
0


(21)

Equation (21) is translated into equations (22)

−dv1 = 0
b1v1 + b2v2 = 0
b4v1 + b3v2 = 0
−β1

A
d v1 + β1

A
d v2 + b5v4 + η1

Ni
N v5 = 0

β1
A
d v1 + β1

A
d v3 + b6v5 = 0

b7v6 = 0


(22)

Solving the system of equation (22), we have:

v1 = v2 = v6 = 0

v3 = −
db6
Aβ1

v5, v4 =
η1Ni
Nb5

v5 and v5 = v5 f ree

Computation of bifurcation Coefficient’s sign a and b
9
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When we apply the center manifold theorem by using Theorem 4.1 in [21] the value of a and bare computed for
the direction of bifurcation as follows:

Sincev1 = v2 = v6 = 0 fork = 1, 2, 6, then, the values of k = 3, 4, 5is considered and employed in the computation
process. From the system of equation (16), we observe that the second partial derivatives of f4and f5are zeros. Hence,
the only contributing terms are those corresponding to f3. Thus, the associated nonzero second order partial derivatives
at disease and infestation free steady state are given as:

∂2 f3
∂x3∂x1

= β1, ∂2 f3
∂x3∂x2

= β2, ∂ f3
∂x5∂x1

= β1 and ∂ f3
∂x5∂x2

= β2

a = v3

5∑
i= j=k

ωiω j
∂2 f3
∂xi∂x j

(0, 0) + v4

5∑
i= j=k

ωiω j
∂2 f4
∂xi∂x j

(0, 0) + v5

5∑
i= j=k

ωiω j
∂2 f5
∂xi∂x j

(0, 0) a

= v3

(
ω3ω1

∂2 f3
∂x3∂x1

+ ω3ω2
∂2 f3
∂x3∂x2

+ ω5ω1
∂2 f3
∂x5∂x1

+ ω5ω2
∂2 f3
∂x5∂x2

)
+ v4 (0) + v5 (0)

a =
−db6

Aβ1

[(
−β1

A
d
ω5

) (
β1

A
d
ω5

)
β1 +

(
−β1

A
d
ω5

) (
−β1

A
d
ω5

)
β2 +

(
ω5β1

A
d
ω5β1

)
+ ω5β1

(
−β1

A
d
ω5

)]
a =
−db6

Aβ1

[
−ω2

5

(
β1

A
d

)2

β1 + ω
2
5

(
β1

A
d

)2

β2 + ω
2
5
β2

1

A
d
− ω2

5
β1

A
d
β2

]
a = −b6ω

2
5

[
−β1

A
d

(β1 − β2) + 1 (β1 − β2)
]

a = b6ω
2
5

[(
β1

A
d + 1

)
(β1 − β2)

]
> 0 , if β1 > β2

b = v3

5∑
i= j=2

ω5
∂2 f3
∂x3∂β1

(0, 0) + v4

5∑
i= j=2

ω5
∂2 f3
∂x4∂β1

(0, 0) + v5

5∑
i= j=2

ω5
∂2 f3
∂x5∂β1

(0, 0)

b = v3ω5 + v5ω5

b = ω5 (v3 + v5) = ω5

(
−

db6

Aβ1
v5 + v5

)
= ω5v5

(
1 −

db6

Aβ1

)
b = ω5v5

(
1 − db6

Aβ1

)
> 0, where 1 > db6

Aβ1
and v5 is a free variable, strictly positive.

Since a > 0and b > 0, the system of equation (1)-(6) exhibit a backward bifurcation. Recall [22] and [23]
critically decomposed the center manifold and found that the sign of “a” can be used to determine the direction of the
bifurcation. Hence, by this reason, we conclude that the system of equation (1)-(6) exhibits backward bifurcation.

Theorem 3: The model undergoes a backward bifurcation sincea > 0, b > 0which occurs at R0 = 1, if β1 < 0,
this implies that there exists unstable negative endemic steady state and whenβ1 > 0, it implies that there exists stable
positive endemic steady state. Therefore, the endemic steady state or (EEP) is locally asymptotically stable for R0
close to one.

3.2. Global stability of the endemic steady state of the model
The global asymptotic stability of endemic steady state E∗4 of the model (1)-(6) is presented in a special case where

honeybee receiving treatment does not transmit disease. Also, it is further assumed that the efficacy of treatment is
perfect atπ = 1. When this holds, then, backward bifurcation ceased to exist. The model (1)-(6) with special case
π = 1is given in equation (23) below:

Ṡ (t) = A − β1S
(
V f + Vv + M + I

)
+ (α1 + 1) M + (α2 + 1) I − dS

Ṁ(t) = β1S
(
V f + M

)
− β2M (Vv + I) − (α1 + 1 + d) M

İ(t) = β1S (Vv + I) + β2M (Vv + I) − (α2 + 1 + d + δ) I
V̇ f (t) = γV f

(
1 − V f

Q(N)

)
− (C1AB + µv) V f

V̇v(t) = η1V f
Ni
N − η2Vv

Ns
N + η3 − (C2AB + µv) Vv

ȦB(t) = τAB

(
1 − AB

k

)
+

(
C1V f +C2Vv

)
AB − µAB


(23)

10
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Figure 1. Backward bifurcation at R0 < 1of the model

In this section, we need to establish the global stability of the endemic steady stateE∗4 of the reduced dynamical
system (23). We now construct positive lyapunov function V(t)by Goh-Volterra type.

Theorem 4: The endemic steady state of reduced model (23), which exists if R0 > 1is Globally Asymptotically
Stable (GAS)

Proof: Let R0 > 1and consider a non-linear lyapunov fuction of Goh-Volterra type given by

V =
(
S − S ∗ − S ∗ log S

S ∗

)
+

(
M − M∗ − M∗ log M

M∗

)
+

(
I − I∗ − I∗ log I

I∗

)
+

(
V f − V f

∗ − V f
∗ log V f

V f
∗

)
+

(
Vv − Vv

∗ − Vv
∗ log Vv

Vv
∗

)
+

(
AB − AB

∗ − AB
∗ log AB

AB
∗

) (24)

Differentiating with respect to time, we have:

V̇ =
(
Ṡ −

S ∗Ṡ
S

)
+

(
Ṁ −

M∗Ṁ
M

)
+

(
İ −

I∗ İ
I

)
+

(
V̇ f −

V̇ f V f
∗

V f

)
+

(
V̇v −

Vv
∗V̇v

Vv

)
+

(
ȦB −

AB
∗ȦB

AB

)
(25)

Substituting the derivatives of
(
S ,M, I,V f ,Vv, AB

)
from the model (1)-(6) into (25), we have:

V̇ =
(
A − β1S

(
V f + Vv + M + I

)
+ w0M + w1I − dS − S ∗A

S + β1S ∗
(
V f + Vv + M + I

)
+ w0M + w1I + dS ∗

)
+

(
β1S

(
V f + M

)
− β2M (Vv + I) − w2M − M∗

M β1S
(
V f + M∗

)
+ β2M∗ (Vv + I) + w2M∗

)
+

(
β1S (Vv + I) + β2M (Vv + I) − w3I − I∗

I β1S (Vv + I∗) + β2M (Vv + I∗) + w3I∗
)

+

(
γV f

(
1 − V f

Q(N)

)
−C1ABV f + µvV f −

V f
∗

V f
γV f

∗
(
1 − V f

∗

Q(N)

)
+C1ABV f

∗ + µvV f
∗

)
+

(
η1V f

Ni
N − η2Vv

Ns
N + η3 −C2ABVv − µvVv −

Vv
∗

Vv
η1V f

Ni
N + η2Vv

∗ Ns
N + η3 +C2ABVv

∗ + µvVv
∗
)

+
(
rAB

(
1 − AB

k

)
+

(
C1V f +C2Vv

)
AB − µAB −

AB
∗

AB
rAB

∗
(
1 − AB

∗

k

)
+

(
C1V f +C2Vv

)
AB
∗ + µAB

∗
)

(26)

Wherew0 = (α1 + 1), w1 = (α2 + 1), w2 = (α1 + 1 + d)and w3 = (α1 + 1 + d + δ).

11
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Using the relation below:

A = β1S ∗
(
V∗f + V∗v + M∗ + I∗

)
+ dS ∗ − w0M∗ − w1I∗ (27)

Hence, equation (27) is at steady state from equations (1)-(6). Therefore, substituting equation (27) into equation (26),
we have:

V̇ =

 β1S ∗
(
V∗f + V∗v + M∗ + I∗

)
+ dS ∗ − w0M∗ − w1I∗ − β1S

(
V f + Vv + M + I

)
+ w0M + w1I − dS

− S ∗
S β1S ∗

(
V∗f + V∗v + M∗ + I∗

)
− S ∗

S dS ∗ + w0
S ∗
S M∗w1

S ∗
S I∗ + β1S ∗

(
V f + Vv + M + I

)
+ w0M + w1I + dS ∗


+

(
β1S

(
V f + M

)
− β2M (Vv + I) − w2M − M∗

M β1S
(
V f + M∗

)
+ β2M∗ (Vv + I) + w2M∗

)
+

(
β1S (Vv + I) + β2M (Vv + I) − w3I − I∗

I β1S (Vv + I∗) + β2M (Vv + I∗) + w3I∗
)

+

(
γV f

(
1 − V f

Q(N)

)
−C1ABV f − µvV f −

V f
∗

V f
γV f

∗
(
1 − V f

∗

Q(N)

)
+C1ABV f

∗ + µvV f
∗

)
+

(
η1V f

Ni
N − η2Vv

Ns
N + η3 −C2ABVv − µvVv −

Vv
∗

Vv
η1V f

Ni
N + η2Vv

∗ Ns
N + η3 +C2ABVv

∗ + µvVv
∗
)

+
(
rAB

(
1 − AB

k

)
+

(
C1V f +C2Vv

)
AB − µAB −

AB
∗

AB
rAB

∗
(
1 − AB

∗

k

)
+

(
C1V f +C2Vv

)
AB
∗ + µAB

∗
)

(28)
Further simplification and collecting all the infested and infected compartments without star (*) from equation (28)
and equating to zero, we have

β1S ∗
(
V f + Vv + M + I

)
− β2M (Vv + I) − w3I − µvV f − µvVv (29)

A little perturbation of steady state from equation (1)-(6) and (29), we have:

w3 = β1S ∗ − β2Mandµv = β1S ∗ (30)

Substituting equation (30) into equation (29) with some algebraic calculations give:

V̇ =
 β1S ∗

(
V∗f + V∗v + M∗ + I∗

)
+ dS ∗ − w0M∗ − w1I∗ − dS − S ∗2

S β1

(
V∗f + V∗v + M∗ + I∗

)
− S ∗2

S d + w0
S ∗
S M∗

+w1
S ∗
S I∗ + 2w0M + 2w1I + dS ∗


+

(
−w2M − M∗

M β1S
(
V f + M∗

)
+ β2M∗ (Vv + I) + w2M∗

)
+

(
−w3I − I∗

I β1S (Vv + I∗) + β2M (Vv + I∗) + w3I∗
)

+

(
γV f

(
1 − V f

Q(N)

)
−

V f
∗2

V f
γ
(
1 − V f

∗

Q(N)

)
+C1ABV f

∗ + µvV f
∗

)
+

(
−η2Vv

Ns
N + η3 + η2Vv

∗ Ns
N + η3 +C2ABVv

∗
)

+
(
rAB

(
1 − AB

k

)
+ −µAB −

AB
∗2

AB
r
(
1 − AB

∗

k

)
+

(
C1V f +C2Vv

)
AB
∗ + µAB

∗
)

(31)
Factorizing equation (31), we have:

V̇ = dS ∗
(
2 −

S
S ∗
−

S ∗

S

)
+β1S ∗

(
V∗f + V∗v + M∗ + I∗

) (
1 −

S ∗

S

)
+w1S ∗I∗

(
1
S
−
β1

w1
−

w2

S ∗w0

)
+w0M∗S ∗

(
1
S
−

1
S ∗
−

w2

S ∗w0

)
(32)

Thus, since the arithmetic mean exceeds the geometric mean, the following inequalities from equation (32) hold(
2 − S

S ∗ −
S ∗
S

)
≤ 0,

(
1 − S ∗

S

)
≤ 0,

(
1
S −

β1
w1
−

w2
S ∗w0

)
and

(
1
S −

1
S ∗ −

w2
S ∗w0

)
≤ 0

Therefore, V̇ ≤ 0 for R0 > 1. Hence, Vis a lyapunov function inΨand it follows by Lassalle’s invariance principle,
that every solution to the modified model (1)-(6) approaches the associated endemic steady state of reduced model
(23) as t → ∞ for R0 > 1. Thus, the endemic steady state is Globally Asymptotically Stable (GAS)

3.3. Sensitivity analysis of the model
Sensitivity analysis is a scientific method employed to determine how different values of an independent variable

will affect a particular dependent variable under a certain set of hypotheses. It can also be used to determine which
parameters are most significant in the model output [24]. We hereby adopted [25] technique in carrying out the sen-
sitivity analysis, by obtaining the normalized sensitivity index of c with respect to individual parameters. Therefore,
we consider the parameters that appeared in reproduction numbers in equation (17) which invariably affect equation
(1)-(6) if changes in their values occur.

12
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Table 4. Signs of Sensitivity Indices for two reproduction numbers R01and R02

Parameters Elasticity Index Sensitivity Index
A 1 positive
β1 1 positive
d 0.456116279 Positive
α1 -0.279069767 Negative
π -0.627906976 Negative
α2 -0.163265306 Negative
δ -0.122448979 Negative

Consequently, sensitivity indices of the basic reproduction numbers in equation (17) with respect to the model
parameter are obtained. The computations are as follows:

Sensitivity index for A : ΓR0
A =

∂R0

∂A
×

A
R0
=

β1

d (α1 + π + d)
×

A
1
×

d (α1 + π + d)
Aβ1

= 1,ΓR01
A = 1 (33)

Sensitivity index for β1 : ΓR0
A =

∂R0

∂β1
×
β1

R0
=

A
d (α1 + π + d)

×
β1

1
×

d (α1 + π + d)
Aβ1

= 1,ΓR01
β1
= 1 (34)

Sensitivity index for d : ΓR0
d =

∂R0

∂β1
×
β1

R0
=

Aβ1

d2 (α1 + π + d)2 ×
d
1
×

d (α1 + π + d)
Aβ1

=
1

(α1 + π + d)
,ΓR0

d =
1

(α1 + π + d)
(35)

Sensitivity index for α1 : ΓR0
α1
=
∂R0

∂β1
×
α1

R0
=

Aβ1

d (α1 + π + d)2×

(
−
α1

1

)
×

d (α1 + π + d)
Aβ1

= −
α1

(α1 + π + d)
,ΓR0
α1
= −

α1

(α1 + π + d)
(36)

Sensitivity index for π : ΓR0
π =

∂R0

∂β1
×
π

R0
=

Aβ1

d (α1 + π + d)2×

(
−
π

1

)
×

d (α1 + π + d)
Aβ1

= −
π

(α1 + π + d)
,ΓR0
π = −

π

(α1 + π + d)
(37)

The signs of sensitivity indices explicitly indicate whether reproduction number increases (positive sign) or de-
crease (negative sign) with the model parameters. Then, establishing the various sensitivity indices we have equations
(33)-(37) which are presented in Table 4.

Thus, from the Table 4, we clearly examined that the sensitivity analysis of both R01and R02 with respect to the
model parameters computed are either of positive or negative sign. The model parameters with positive sign are:
constant recruitment rate of healthy honeybee, rate of infestation by virus-free Varroa-mite and natural death rate for
all honeybee population. Conversely, the model parameters with negative sign are: disinfestation rate for honeybee
infested by virus-free Varroa-mite, treatment, disinfestation rate for honeybee infested by virus-carrying Varroa-mite
and infection induced death for the honeybee population. The model parameter with positive sign indicated that, any
attempt to increase the value of these parameters will increase the spread of Varroosis, as such; they have a greater
impact on the rise of the reproduction number. On the contrary, increasing the value of model parameter with negative
sign indicated that, there is invariable decrease in the spread of Varroosis, which sufficiently reduces the reproduction
number.

4. Conclusion

A mathematical model, which considers treatment and biocontrol as combine intervention strategies adopted to
control the menace of Varroosis in honeybee colony, is developed and analyzed. The study established the existence of
disease-free and infestation-free, infestation with virus-free Varroa-mite, infestation with virus-carrying Varroa-mite
and endemic steady states respectively. The centre manifold theory was used to determine the local asymptotic stabil-
ity of the endemic steady state. It revealed that, model (1)-(6) undergoes backward bifurcation when its corresponding
reproduction numberR0 < 1. This occurs due to ineffective treatment (i.e. π , 1). However, when treatment is 100%
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effective (i.e. π = 1), the disease-free and infection-free steady state of model (1)-(6) is globally asymptotically sta-
ble provided that its associated reproduction number is less than unity. Also, the endemic steady state for a special
case (i.e. the reduced model given by (23)) is shown to be globally asymptotically stable whenever its associated
reproduction number is greater than unity (R0 > 1).

As part of possible extension, more refined models with seasonality terms can be studied. Stochastic model
mimics and portrays the phenomenal complexity nature of Varroosis rather than deterministic model. Also, Fractional
derivatives, instead of integer-order derivatives to consider the long-term memory effect, with functional response II
in honeybee is a possible extension of this study.
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[18] A. Dénes & G. Röst, “Dynamics of an Infectious Disease Including Ectoparasites, Rodents and Humans”, Biomathematics: Modeling,

Optimization and Computational Problems (2018) 59. https://doi.org/10.1007/978-3-319-91092-55
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