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Abstract

A phase-space factorization of lines in finite geometry G(m) with variables in Zm and its correspondence in finite Hilbert space
H(m) for m a non-prime was discussed. Using the method of Good [15], lines in G(m) were factorized as products of lines G(mi)
where mi is a prime divisor of m. A lattice was formed between the non trivial sublines of G(m) and lines of G(mi) and between
a subspace of H(m) and bases of H(mi) and existence of a link between lines in phase space finite geometry and bases in Hilbert
space of finite quantum systems was discussed.
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1. Introduction

Finite geometry has received a lot of attention in the past. In particular, near-linear types are attracting attention.
The reason may be related to its wide range of recently discovered uses. Lines of finite geometry are linked to
phase-space finite quantum systems in the sense that for instance, taking the absolute value of the scalar product of
any two (orthogonal) vectors each from different bases yields 1

√
m . Also, the number of mutually unbiased bases in

a finite-dimensional Hilbert space is equal to m + 1. This number corresponds to the number of finite-dimensional
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lines in finite geometry [1–9]. In more recent times, non-near-linear finite geometry started receiving audience from
researchers [11–14]. This could be linked to its duality with the weak mutually unbiased bases in finite quantum
systems with variables in Zm.
For a prime dimensional finite geometry, two lines intersect at a point. For a non-prime dimensional finite geometry,
two lines intersect at least one point. The Geometry of this type is called the non-near-linear finite geometry [12–14].
In this article, we show how to decompose a large-dimensional finite geometry, called nonlinear finite geometry, into a
product of many prime finite dimensional geometries, called near-linear geometries. This approach was adapted from
Good’s method of Fast Fourier Transforms [15]. This method decomposes the large Hilbert space qudits into smaller
qudits using an appropriate uniform transformation. This method arose because of the difficulty of solving problems
consisting of very large integers. In [15] a large integer was factored as the product of many small integers. The same
was employed in [10] to factor a large-dimensional finite quantum system with variables of Zm as a product of many
small-dimensional finite quantum systems. For mi | m; Gmi ⊂ Gm, lines in Gm is factored as as products of lines in
Gmi s

′, each lines in Gmi s
′ has mi points. For mk, mi | m; the union of any two lines in Gmi produce a line in Gmk with

mk points. Hence, form a lattice between lines in phase-space finite geometry Gm, for Gmi | Gm. We divide the whole
work into the following parts; Various notations used throughout the work were defined in the preliminaries of this
work in section II. Section III covers finite geometry G(m). We discuss the factorization of lines in finite geometry
in section IV. Section V gave a symplectic structure on G(m) with numerical examples. In section VI of this work,
the non-prime dimensional finite quantum systems f(m) with variables in Zm where m is a non-prime is expressed
as products in prime dimensional finite quantum systems f(mi) with variables in Zmi where p is a prime. In section
VII, we relate the concept of factorization to mutually unbiased bases in prime dimensional Hilbert space. Section
VIII covers the extension of mutually unbiased bases where a non-prime dimensional Hilbert space is expressed as a
product of two prime dimensional Hilbert space H(m) via factorization. The final section draws a necessary conclusion
from the study.

2. Preliminaries

(i) Let Zm represents the ring of integer modulo m.

(ii) |Z∗m| represents the invertible integer modulo m. |Zm| is ϕ(m). Where

ϕ(m) = m
k∏

j=1

(
1 −

1
mj

)
(1)

(iii) The Dedekind psi function ψ(m) is defined as

ψ(m) = m
k∏

j=1

(
1 +

1
mj

)
; mj = prime (2)

(iv) The set of divisor is denoted in this work by {D(m)}. Its cardinality is a divisor function σ0(m). Here mi|m
means mi divides m. If mi|m it means there exists a number say k an integer such that m

mi
= k that is m = kmi.

We showed the existence of a bijection between the products of the distinct set {D(m)} of prime divisors m and
Zmi . The elements of Zmi are embedded in Zm for mi|m thus

Zmi 3 ζ → Zm 3
mζ
mi
. (3)

(v) GCD(ξ, ρ) represents the greatest common divisor of two elements ξ and ρ.

(vi) Integer m is expressed as products of its distinct primes

m = m1 × m2 × ... × mk. (4)

In this work, our discussion centres on a composite integer which express as products of two prime integers that
is m = m1 × m2. Zm is a cyclic module.

2



Adeshola et al. / African Scientific Reports 2 (2023) 96 3

3. Lines in finite geometry G(m)

A finite geometry G(m) = Zm × Zm is defined as the combination

G(m) = (P(m),L(m)). (5)

Pm represent points on a line and L(m) represent lines in G(m) where

P(m) = {(k, g)|k, g ∈ Zm}. (6)

Definition 3.1. A line L(x, y) of G(m) defined as

L(x, y) = {(αx, αy)| x, y ∈ Zm)} α ∈ Zm (7)

The representation
∏k

j=1 G(mj) and
∏k

j=1 Zm × Zm have similar interpretation, so at times we interchange them.

We discuss extensively finite geometry as a result our point of focus is on both near-linear and non-near-linear geom-
etry. Here, two lines intersect in at least one point.

Proposition 3.2. (i) In G(m) there exists ψ(m) maximal lines with exactly m points.

(ii) For η ∈ Z∗m

L(ηl, ην) = L(l, ν). (8)

also, if

For Z∗′m 3 η then L(ηl, ην)mod(m) ⊂ L(l, ν). (9)

(iv) if GCD(l, ν) ∈ Z∗m),L(l, ν) is a maximal line in G(m). and if GCD(l, ν) ∈ Zm −Z∗m then L(l, ν) is a subline in G(m)

(iii) There exists ψ(m) maximal lines in G(m).

(iv) Suppose G(m) is a finite geometry in equation(7). Then the line

L(l, ν) = L(kl, kν) = {(kηl, kην)|k ∈ Zm}, in G(kν) (10)

A line L(kl, kν) in G(kν) is a subline of

L(l, ν) = {(k′l, k′ν)| k′ = 0, ..., ην − 1}, (11)

(v) For mi|t two maximal lines have mi points in common. The t points gives a subline L(l, ν) where l, ν ∈ m
k Zmi .

4. Factorization of lines in finite geometry

Lines in Zm×Zm were factored as products of lines in
∏k

i=1 Zmi×Zmi then a one-to-one and onto map was established
between lines in G(m) and its factor lines in G(m). We adopted this concept from Good [15]. Similar thought was
applied in [1] and [11–13] to factorize large finite-dimensional quantum systems as products of its finite subsystems.
Here we used the same approach to create the ordinates of each of the points on the lines G(m) in non-near-linear
geometries as products of many ordinates in the lines G(m) in near-linear geometries. This was carried out by creating
two bijections, one for each of the two ls′ and ms′ ordinates for each line thus:

l←→ (l1, ..., lk); lj = l(mod mj); l =
∑

ljsj (12)
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m←→ (m̄1, ..., m̄k); m̄j = mtj = mjtj(mod mj); m =
∑

m̄jrj(mod m) (13)

where

rj =
m
mj

; tjrj = 1(mod mj); sj = tjrj ∈ Zm. (14)

l and m ordinates in the non-near-linear geometry we factorised in line with equations (12) and (13). Hence an
existence of 1 − 1 correspondence was confirmed between

L(l,m) in G(m) (15)

and lines

L(l1, m̄1) × ... × L(lk, m̄k) ∈
k∏

i=1

(Zmi × Zmi ) (16)

where

(l,m)↔ (l1, m̄1) × ... × (lk, m̄k) and mj a prime (17)

In the previous work of [11–13] we confirm the following:

(i) mψ(m) maximal lines in total.

(ii) ψ(m) distinct maximal lines.
In addition,

(iii) We found an existence of ψ( m
mi

) sublines each with mi points.

Analogously, we observe the following

(i) L(a, b̄) are prime factor lines of Zmi × Zmi , where mi is a prime number.

(ii) Lines in Zm × Zm =
∏k

j=1(Zmj × Zmj ) is related to expressing a non prime integer as products of its prime.

(iii) The subline G(mi) is related to the divisor mi of an integer.

As an illustration, we express all maximal lines in G(m) = Zm × Zm for m = 14 in terms of its primes discussed in
equations (12) and (13) above by decomposing line L(2, 5).
Using equation (12) the ordinate 2 in L(2, 5) is decomposed as;

2←→ (0, 2) (18)

also using equation (13) the ordinate 5 in L(2, 5) is decomposed as;

5←→ (1, 6) (19)

Therefore L(2, 5) is decomposed as;

L(0, 1) × L(2, 6). (20)

If we relate equation (20) to equations (12) and (13), L(2, 5) is expressed as

L(1,−1) × L(1, 2) ≡ Ω(−1, 3). (21)

4



Adeshola et al. / African Scientific Reports 2 (2023) 96 5

Table 1. Factorization of Lines in G6 as products of lines in G2 and G3 that is G6 = G2 ×G3.
G6 G2 G3

L6(0, 1) L2(0, 1) L3(0, 2)
L6(1, 0) L2(1, 0) L3(1, 0)
L6(1, 1) L2(1, 1) L3(1, 2)
L6(1, 2) L2(1, 0) L3(1, 1)
L6(1, 3) L2(1, 1) L3(1, 0)
L6(1, 4) L2(1, 0) L3(1, 2)
L6(1, 5) L2(1, 1) L3(1, 1)
L6(2, 1) L2(0, 1) L3(2, 2)
L6(2, 3) L2(0, 1) L3(2, 0)
L6(2, 5) L2(0, 1) L3(2, 1)
L6(3, 1) L2(1, 1) L3(0, 2)
L6(3, 2) L2(1, 0) L3(0, 1)

5. Sp(2, Zm) Transformation on G(m)

The matrix M( f , g|n, l)

M( f , g|n, l) ≡
(

f g
n l

)
where f , g, n, l ∈ Zm and |M| = 1(modm) (22)

form a Symplectic group.

M( f , g|n, l)(µi, νi)T = L( fµi + gνi, µin + lνi), i = 1, 2, · · · ,m (23)

As an illustration, acting a matrix M(0, 1| − 1, l), on a line L(1, l) this produces ψ(m) set of lines through the origin.
In general, using equations (12) and (13), S p(2,Zm) is factorized as S p(2,Zm1 ) × · · · × S p(2,Zmk ), that is

M( f , g|n, l) =

k⊗
j=1

M(pj, rjqj|n̄j, lj) (24)

where pj, qj, lj are related l in equation (12) and nj is related to n in equation(13).

5.1. Factorization in finite geometry
We showcase how prime dimensional finite geometry are embedded in non-prime dimensional finite geometry

via divisor function. Using the symplectic matrix defined in equation (15), we factorized lines in finite geometry
G(m) as product of its prime finite geomerty with respect to equations (12) and (13). Thus, S p(2,Zm) is factorized as
S p(2,Zm1 × ... × Zmk ),
where M( f , g|n, l) is defined in equation (24) above
Example; m = 6 ≡ 2 × 3; suppose f = 2, g = 5, n = 1, l = 3
then M(2, 5|1, 3) is factorized in terms of equation (24) using equations (12) and (13) as;

M(2, 5|1, 3) = M(1, 0|1, 1) ⊗M(2, 1|1, 1) (25)

More examples are shown in the Table 1 below for m = 6; m1 = 2,m2 = 3, r1 = 3, r2 = 2, t1 = 1, t2 = 2,

6. Factorization and partial ordering in finite quantum systems f(m) with variables in Zm

Finite quantum systems f(m) with variables in Zm for m a non prime is factorized as products of its distinct prime
f(mi) in this section.

5
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Here, mi|m, Zm has Zmi as its subgroup. As a result, we express a finite system f(m) has f(mi) as its subsystem.
We use the notations |Xm; δ〉 and |Pm; δ〉 to denote the positions and momenta states respectively, where δ ∈ Zm. The
concept

Fm = m−
1
2

m−1∑
δ,N

ω(δN)|Xm; δ〉〈Xm; N |; ω(δ) = exp
(
i
2πδ
m

)
(26)

represents the Fourier transform. The momentum states is obtained by acting the Fourier transform of the position
states, that is

|Pm; δ〉 = Fm|Xm; δ〉. (27)

As an illustration suppose m = 2, we have

F2 =
1
√

2

[
ω(0)|X2; 0〉〈X2; 0| + ω(0)|X2; 0〉〈X2; 1| + ω(0)|X2; 1〉〈X2; 0| + ω(1)|X2; 1〉〈X2; 1|

]
(28)

This produces
1
√

2

(
1 1
1 ω

)
(29)

For m = 3 we get

1
√

3

 1 1 1
1 ω ω2

1 ω2 ω

 (30)

for m = 6 we get

1
√

6



1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5

1 ω2 ω4 1 ω2 ω4

1 ω3 1 ω3 1 ω3

1 ω4 ω2 1 ω4 ω2

1 ω5 ω4 ω3 ω2 ω1


, ω0 = 1 (31)

D(κ, ξ) represent the displacement operator, it is defined as

D(κ, ξ) = ZκXξω(−2−1κξ) (32)

where

Zκ =

m−1∑
N=0

ω(Nκ)|Xm; N〉〈Xm; N |; (33)

Xξ =

m−1∑
N=0

ω(−Nκ)|Pm; N〉〈Pm; N | (34)

and

XξZκ = ZκXξω(−κξ); Xm = Zm = 1 (35)

The D(κ, ξ)ω(µ) where κ, ξ, µ ∈ Zm forms a group called an Heisenberg-Weyl group.

6.1. Factorization of bases as prime factor bases
In this subsection, we use Chinese Remainders Theorem (CRT) to express a finite quantum system f(m) with

variables in Zm as products of its subsystems f(mi) with variables in Zmi . CRT was used by [10–14] to express a large
size finite quantum system f(m) with variables in Zm as products of its component subsystems f(m1), ..,f(mk) with
variables in Zmk using equations (12) and (13). Our findings shows an existence of bijection between a large dimension

6
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finite Hilbert space H(m) and the tensor products of its components space H(mi) where m1, ...,mk are relatively prime.
That is

|Xm; δ〉 ←→
k⊗

j=1

|Xpj ; δ̄ j〉,Dm(κ, ξ) =

k⊗
j=1

Dpj (κj, ξ̄j),H(m) =

k⊗
j=1

H(mj) (36)

(mj is a prime), where
|Xm; δ〉 ←→ |Xm1 ; δ̄1〉 ⊗ ... ⊗ |Xmk ; δ̄k〉 (37)

and

|Pm; δ〉 ←→ |Pm1 ; δ1〉 ⊗ ... ⊗ |Pmk ; δk〉 (38)

As illustrations, a six dimensional Hilbert space H6 was factorized as products of two and three dimensional spaces,
H2 ⊗H3, thus using equations (12) and (13) for case m = 6, the first bijection is, 5←→ (1, 2) and the second bijection
is 5←→ (1, 1).
Therefore; position states in H6 is factorized as;

|X6; 5〉 ←→ |X2; 1〉 ⊗ |X3; 2〉 (39)

Its momentum states is obtained thus;

|P6; 5〉 ←→ |P2; 1〉 ⊗ |P3; 1〉 (40)

Using equation (32), and for m = 6, the displacement operator D(κ, ξ) is factorized as

D6(3, 5) = D2(1, 1) ⊗ D3(0, 1) (41)

6.2. Embedding of small systems into large systems
We discuss how a small dimensional finite quantum system f(mi) was embedded into a large dimensional finite

quantum systems f(m) for mi|m. We consider an orthonormal basis |Xm; δ〉 where δ ∈ Zm.
If mi|m then Zmi ⊂ Zm, it implies f(m) 3 f(mi).
Suppose we define a quantum subsystem f(m) contained f(mi), an injective map with respect to position state is
defined as;

mi−1∑
δ=0

Sδ
∣∣∣∣∣Xmi ; δ〉 →

m−1∑
δ=0

Sδ
∣∣∣∣∣Xm;

mδ
mi

〉
(42)

The above relation in equation (42) is expressed in terms of momentum states as;

mi−1∑
δ=0

Tm

∣∣∣∣∣Pmi ; δ
〉
→

m−1∑
δ=0

Tδ
∣∣∣∣∣Pm;

mδ
mi

〉
(43)

As illustration, let m = 6,mi = 2, 3; the subgroup of Z6 are

Z2 = {0, 1} and Z3 = {0, 1, 2}. (44)

We express a finite quantum system f(6) as,

f(6) = |X6; δ〉 = {|X6; 0〉, |X6; 1〉, |X6; 2〉, |X6; 3〉, |X6; 4〉, |X6; 5〉}. (45)

Its subsystems are

|X3; 2δ〉 = {|X3; 0〉, |X3; 2〉, |X3; 4〉}. (46)
|X2; 3δ〉 = {|X2; 0〉, |X2; 3〉}. (47)

f(mi) takes values from Zmi of Zm of the variables f(m).
It is observed above that equation (46) is embedded in equation (45).

7
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Futhermore, an existence of a one − one map between f(3) and f(6) is confirmed which implies that the quantum
states of f(mi) are embedded into f(m) as shown below.

 S0
S1
S2

→


S0
0
S1
0
S2
0


(48)

The above relation in equation (42) is expressed in terms of momentum states as;

mi−1∑
δ=0

Tδ
∣∣∣∣∣Pmi ; δ

〉
→

m−1∑
δ=0

Tδ
∣∣∣∣∣Pm;

mδ
mi

〉
(49)

for m = 6 and mi = 2 the left hand side (LHS) of equation (49) yields,

2−
1
2

(
T0 + T1

T0 + T1ω

)
(50)

For the right hand side (RHS ) of equation (49) we have

mi−1∑
m=0

Tδ
∣∣∣∣∣Pm;

mδ
mi

〉
= 6−

1
2



T0 + T1
T0 + T1ω
T0 + T1

T0 + T1ω
T0 + T1

T0 + T1ω


(51)

There exists an injection between equations (50) and (51). This implies that equation (50) is embedded in equation
(51) confirming equation (49). That is

2−
1
2

(
Tt0 + T1
T0 + T1ω

)
→ 6−

1
2



T0 + T1
T0 + T1ω
T0 + T1

T0 + T1ω
T0 + T1

T0 + T1ω


(52)

Hence, an existence of partial order relation has been observed in general within the non-prime dimensional finite
geometry and finite quantum systems with subgeometries and subsystems as partial order. This thereby demonstrates
dualities between geometries and quantum systems.

7. Mutually unbiased bases

Prime dimensional Mutually unbiased bases has been discussed in many works in the past. It is a situation where
by the overlap of two orthogonal vectors of finite dimennsion yields 1

√
m . that is

|〈X∆i ; β|X∆j ;α〉|
2 =

1
m
, ∀|X∆i ; β〉 ∈ |B(∆i); β〉 and |X∆j ;α〉 ∈ |B(∆j);α〉, (53)

for ∆i , ∆j.
It was confirmed in [11] that absence of inverse of 2 in even dimensional finite Hilbert space leads to inability to know
the number of mutually unbiased bases. As a result we restrict our discussion to finite systems with odd dimension

8
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only.
The displacement operators is defined earlier in equation (32), it forms a representation of Heisenberg-Weyl group.
Symplectic transformation has been studied in [10]. It satisfies the conditions;

[M( f , g|m, l)]Xm[M( f , g|m, l)]† = D(g, f )

[M( f , g|m, l)]Zm[M( f , g|m, l)]† = D(l,m)

M( f l − gm) = 1(mod (m)), f , g,m, l ∈ Zm (54)

In this work M( f l − gm) defined in equation (15) andM( f l − gm) in equation (54) do not belong to the same repre-
sentation. The Fourier transform is defined as

Fm =M(0, 1| − 1, 0). (55)

The mutually unbiased bases in finite quantum systems with odd dimension thus;
Suppose

∆ = −1→ |X−1;α〉 =M(1, 0|0, 1)|Xmi ;α〉
∆ = 0, ...,mi − 1→ |X∆;α〉 = M(0, 1| − 1,∆)|Xmi ;α〉 (56)

for ∆ = 0, |X0;α〉 = |Pmi ;α〉.
If we take any two states where these two states are not from the same bases, calculating the modulus of their dot
product yields equation (53).
In this case, there exists ψ(mi) mutually unbiased bases.

|B∆;α〉 = {|X∆;α〉}; ∆ = −1, ...,mi − 1 (57)

The mutually unbiased bases for prime dimension, mi = 3 is shown below.
Let

|B−1;α〉 = {|X−1(1, 0|0, 1);α〉}, α ∈ Z3 (58)

represents the standard bases, here |X−1(1, 0|0, 1);α〉 is equivalent toM(1, 0|0, 1)|X3;α〉.
We obtained the remaining bases by using symplectic transform |X−1;α〉;
M(0, 1| − 1,∆)|X3;α〉 = |X∆(0, 1| − 1,∆);α〉 where ∆ ∈ Zmi and α ∈ Zmi

(i) For ∆ = 0; |B0;α〉 = {|X(0)(0, 1| − 1, 0);α〉};
(ii) For ∆ = 1; |B1;α〉 = {|X(1)(0, 1| − 1, 1);α〉};
(iii) For ∆ = 2; |B2;α〉 = {|X(2)(0, 1| − 1, 2);α〉}. (59)

Taking any two states from distinct bases and calculating the modulus of their dot product yields mi
− 1

2 .

7.1. Factorization of bases and weak mutually unbiased bases (WMUB)
As discussed earlier in Factorization of lines, bases of a non-prime dimesional finite Hilbert space of finite quantum

systems f(m) is expressed as products of prime dimensional Hilbert space f(mi). This concept had been discussed by
many authors [1] and [11–13] was used by Good in [15]. However in our work we mentioned it briefly to showcase
the duality in finite geometry in its match in finite quantum systems. Let {|Bi;α〉} denotes a set of g orthonormal bases
in the Hilbert spaces H(m) where β ∈ Zm and j = 1, 2, ..., g is called a weak mutually unbiased bases if.

|〈Bj; β|Bi;α〉| = m−
1
2

i or 0, ; mi|m (i , j) (60)

Any set of weak mutually unbiased bases in H(m) can be expressed as products of mutually unbiased bases. |X∆1 ; ᾱ1〉⊗

... ⊗ |X∆k ; ᾱk〉 where {|X∆1 ; ᾱ1〉} is a set of mutually unbiased bases in Hilbert subspace H(m1), {|X∆2 ; ᾱ2〉} is a set
of mutually unbiased bases in Hilbert subspace H(m2), ..., {|X∆k ; ᾱk}〉 is a set of mutually unbiased bases in Hilbert
subspace H(mk).

9
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This is analogous to expression of a non-prime positive integer as products of its prime factors. Bases in non-prime
dimension finite quantum systems is expressed as follows;

|Xm;α〉 = |Xm1 ; ᾱ1〉 ⊗ ... ⊗ |Xmk ; ᾱk〉, α ∈ Zm ᾱ ∈ Zmj (61)

As a result from equation (36),the weak mutually unbiased bases is expressed here as

|X∆1,...,∆k ; ᾱ1, ..., ᾱk〉 = |X1,∆1 ; ᾱ1〉 ⊗ ... ⊗ |Xk,∆k ; ᾱk〉 (62)

where ᾱj ∈ Zmj and −1 ≤ αj ≤ mj − 1.
In a special case , if

∆1 = ... = ∆k = −1, (63)

then

|X−1,...,−1; ᾱ1, ..., ᾱk〉 = |X1,−1; ᾱ1〉 ⊗ ... ⊗ |Xk,−1; ᾱk〉

= |X1; ᾱ1〉 ⊗ ... ⊗ |Xk; ᾱk〉 (64)

If

∆1 = ... = ∆k = 0, (65)

then

|X0,...,0; ᾱ1, ..., ᾱk〉 = |X1,0; ᾱ1〉 ⊗ ... ⊗ |Xk,0; ᾱk〉

= |P1;α1〉 ⊗ ... ⊗ |Pk;αk〉 (66)

taking the absolute value of the dot product of any two states each belonging to different bases in equations (64) and
(66), it satisfies the relation;

|〈X∆1,...,∆k ; γ̄1, ..., γ̄k|X∆1,...,∆k ; ᾱ1, ..., ᾱk〉| =
1
√

mi
or 0, mi|m. (67)

There exists

ψ(m) =

k∏
j=1

(mk + 1) (68)

maximum number of weak unbiased bases in Hilbert space Hm.

|B∆1,...,∆k ;α〉 = {|X∆1,...,∆k ; ᾱ1, ..., ᾱk〉} (69)

An existence of the duality between lines in finite geometry and weak mutually unbiased bases was discussed. Table
2 below shows the summary of the duality for line in G(m) and bases in H(m) where m = 6.
|B∆1,∆2 ;α〉 represents bases in a finite Hilbert space of a quantum systems,

|Xm1 (0, 1| − 1,∆1); ᾱ1〉 represents an orthogonal vector in state ᾱ1, where ᾱ1 ∈ Zm1

|Xm2 (0, 1| − 1,∆2) represents an orthogonal vector in state ᾱ2, where ᾱ2 ∈ Zm2 .

8. Duality between weak mutually unbiased bases in H(m) and lines in G(m)

The maximal lines in G(m) corresponds to weak mutually unbiased bases in H(m). The ψ(m) maximal lines in
G(m) conforms to ψ(m) weak mutually unbiased bases in H(m). Each maximal lines has m points, also there are
m orthogonal vectors in each of WMUB in H(m). For mi|m, the subgeometries G(mi) of G(m) corresponds to the
subsystems f(mi) of f(m).
There are σ0(m) subgeometries G(mi) of G(m) and likewise there are σ0(m) subsystems f(mi) of f(m).

A phase-space finite geometry G6 contains:
10
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Table 2. Weak mutually unbiased bases for H(6) = H(2) ⊗ H(3).
|B∆1,∆2 ;α〉 |Xm1 (0, 1| − 1,∆1); ᾱ1〉 |Xm2 (0, 1| − 1,∆2); ᾱ2〉

|B−1,−1;α〉 |X2,−1(1, 0|0, 1); ᾱ1〉 |X3,−1(1, 0|0, 1); ᾱ2〉

|B−1,0;α〉 |X2,0(1, 0|0, 1); ᾱ1〉 |X3,0(0, 1| − 1, 0); ᾱ2〉

|B−1,1;α〉 |X2,1(1, 0|0, 1); ᾱ1〉 |X3,1(0, 1| − 1, 1); ᾱ2〉

|B−1,2;α〉 |X2,−1(1, 0|0, 1); ᾱ1〉 |X3,2(0, 1| − 1, 2); ᾱ2〉

|B0,−1;α〉 |X2,0(0, 1| − 1, 0); ᾱ1〉 |X3,−1(1, 0|0, 1); ᾱ2〉

|B1,−1;α〉 |X2,1(0, 1| − 1, 1); ᾱ1〉 |X3,−1(1, 0|0, 1); ᾱ2〉

|B0,0;α〉 |X2,0(0, 1| − 1, 0); ᾱ1〉 |X3,0(0, 1| − 1, 0); ᾱ2〉

|B0,1;α〉 |X2,0(0, 1| − 1, 0); ᾱ1〉 |X3,1(0, 1| − 1, 1); ᾱ2〉

|B0,2;α〉 |X2,0(0, 1| − 1, 0); ᾱ1〉 |X3,2(0, 1| − 1, 2); ᾱ2〉

|B1,0;α〉 |X2,1(0, 1| − 1, 1); ᾱ1〉 |X3,0(0, 1| − 1, 0); ᾱ2〉

|B1,1;α〉 |X2,1(0, 1| − 1, 1); ᾱ1〉 |X3,1(0, 1| − 1, 1); ᾱ2〉

|B1,2;α〉 |X2,1(0, 1| − 1, 1); ᾱ1〉 |X3,2(0, 1| − 1, 2); ᾱ2〉

G(6) ↔ H(6)

G(2) ↔ H(2) G(3) ↔ H(3)

G(1) ↔ H(1)

Figure 1. The Hasse diagram showing duality between G(6) and H(6)

1. Lines with 6 points subgeometries G2 and G3 with lines with 2 and 3 points, respectively. A finite Hilbert space
H6 contains bases each with 6 orthogonal vectors, subspaces H2 and H3.

2. A union G2 and G3 is isomorphic to subgeometry G6. A union H2 and H3 is isomorphic to subspace of H6.

3. An intersection of G2 and G3 is isomorphic to G1. Also, an intersection of H2 and H3 is isomorphic to subspace
H1.

Hence, from properties (1), (2), and (3) above, the Hasse diagram does not only show a duality but also form a lattice
as shown in figure 1.

9. Conclusion

This study pays attention to the existence of lattices in non-near linear finite geometry G(m) and prime geometries
G(mi), as well as the finite quantum system Π(m) and its subsystem Π(mi), with subsystems, forming a lattice. More

11
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importantly, the results shown in this study demonstrate those important relation which exists between a structure and
its substructures both in quantum system and geometry in its phase space.
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