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Abstract

Rechargeable batteries and energy storage devices play a major role in many facets of human endeavour due to their efficiency
and portability. In this work, we investigated the suitability of single-layer intercalated Yttrium-based MXenes Y2CT2 (T= Li,
Mg, Al) and Y2NLi2 as potential energy storage materials using the first principle calculation within the framework of the density
functional theory approach. Upon intercalation, the lattice constants of the MXenes expand due to the size of the intercalating
species and the electrostatic repulsion. We obtained the theoretical gravimetric capacities, open circuit voltages and adsorption
energies. The obtained open circuit voltages for Y2CT2 (T= Li, Mg) and Y2NLi2 falls within the voltage window of 0−1.0V which
has been found to eliminate dendrites formation caused by alkaline metals during the discharge-charge cycle. The adsorption
energies indicate the stability of the intercalating ion on the MXenes surfaces except for Al cation. The results are consistent with
other studies on similar MXene families in the existing literature. The work may aid the understanding of the electrochemical
properties of 2D materials and we recommend Y2CLi2, Y2NLi2, and Y2CMg2 for future investigation as potential materials for
rechargeable batteries.
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1. Introduction

Electrochemical energy storage materials applications have grabbed the curiosity of many researchers and com-
mercial companies in recent years given their advantages over fossil fuels. Generally, energy storage devices may be
employed in many applications such as rechargeable batteries, phones, laptops, wrist watches, powering automobiles
and so on. Owing to their efficiency and portability, efforts have been put into research to determine and synthesize
suitable and low-cost materials for energy storage device applications. The methods employed in determining the
energy storage materials are experimental and theoretical techniques. A theoretical method such as the first principle
approach [1–4] has been used to simulate the electronic structure, mechanical properties [5, 6], thermoelectric prop-
erties [7–9] energy storage [10–17] and others. This method has been implemented into various computing codes
such as VASP [18], CASTEP [19], QUANTUM ESPRESSO [20, 21], WEIN2K [22] and so on. The codes offer the
advantage of being low-cost and can be used to simulate the artificial properties of materials. Such simulation results
may be compared to experimental data and also help the experimentalist in making decisions during the fabrication
process. Materials for energy storage have drawn the attention of the material science community in recent decades.
To this end, two-dimensional (2D) materials such as Graphene [23, 24] and MXenes [10, 11, 25] have been explored
due to their unique quality in retaining electrochemical energy.

The MXenes family belongs to a large group of 2D systems due to the combination of different chemical ele-
ments and structural arrangements. The MXenes possess chemical formula Mn+1XnT2 and are derived from the 3D
parent ternary compounds known as MAX phases (Mn+1AXnT2) through acid (HCl and HF or both) etching of the
A elements [10]. The respective elements M, A, X and T represent early transition metals (Ti, Ta, Nb, Y, W, Sc, V,
Mo Zr), group 13 or 14 elements, Carbon and or Nitrogen and surface termination groups. The chemical acid synthe-
sis has Oxygen (O), Fluorine (F) and hydroxyl elements as the as-prepared functional groups. Other surface groups
(FH, H, Br, ClH and so on) have been derived [26] and found to be chemically stable on the bare MXenes. A few
double transition metal MXenes have been synthesized [27–29] with many others predicted theoretically [30–34].
The structural configurations and wide range of chemical elements make the MXenes material a large family of 2D
materials comparable to the Perovskites, metal oxides/hydroxides, transition metal dichalcogenides, graphene and its
derivatives [35]. The structural arrangements, the nature of the transition metals and surface terminations elements
give rise to different electronic structures such as metallic, semi-metallic, semiconductor, insulator and magnetic or-
dering. These properties have been explored in electrochemical energy storage [10, 11], thermoelectric applications
[26, 36–42], water purification [43–45], triboelectric devices [46], sensors [47–50] and telecommunications [51]. The
most relevant application to our work is in energy storage where many authors have explored using both theoretical
and experimental methods [52–60].

The motivation in this current work is two-fold. (a) To use the density functional theory (DFT) approach to
predict potential energy storage properties for new MXene systems as alternatives to existing materials. (b) In a recent
work [25], the screening of many MXenes materials for potential energy storage applications has been investigated
theoretically. However, we are proposing new MXenes not included in [25]. We studied the theoretical gravimetric
capacity and open-circuit voltage of mono-layer Y2CLi2, Y2NLi2, Y2CMg2 and Y2CAl2 MXenes using the DFT
approach. The organization of the remaining part of the paper is as follows: in section two, we will present the
theoretical method of computation. Section three contains the discussion of the results and in section four we will
give the conclusion.

2. Materials and Method

We considered the screening of mono-layer MXenes materials for battery applications by intercalating metal ions
such as Li+ Mg2+ Al3+ into the MXene layers using first principles calculation within the framework of the DFT
approach. We used Yttrium-based MXenes as case studies. In particular, the following MXenes Y2CT2 (T= Li, Mg,
Al) and Y2NLi2 are treated with the augmented plane wave method as implemented in the QUANTUM ESPRESSO
package [15, 16]. For the structural optimization, we used a 12 × 12 × 1 Monkhorst and Pack [61] k points grids
for the Brillouin zones integration. We employed the generalized gradient approximation (GGA) of Perdew Burke
and Ernzenhof (PBE) for the exchange-correlation functional [62] and utilized a plane-wave cutoff kinetic energy of
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105Ry for the wave function. Furthermore, we used a cutoff of 630Ry for the charge density and potential. The total
energy convergence threshold was set at 1 × 10−10Ry. We used the Methfessel-Paxton smearing scheme [63] with
a smearing width of 0.011Ry. As for the bare MXenes, we used 10 × 10 × 1 Monkhorst and Pack k points grids to
sample the Brillouin zones. The plane-wave cutoff kinetic energy of 80Ry and a cutoff of 480Ry were used for the
wave function and the charge density respectively. The density of state calculations was obtained using a 30 × 30× 1
k-points grid with the tetrahedron method [64]. To circumvent any interaction between a monolayer and its periodic
images we set a vacuum space of 20 Å along the c axis. The 2D MXenes possess a hexagonal crystal structure with
symmetry P-3m1 and space group number 164. The symmetry points for the Brillouin zone are Γ (0, 0, 0) , M(1/2,
0,0) and K

(
1
3 ,

1
3 , 0
)
. The structure of the bare MXene before and after metal ion intercalation is presented in Figure 1.

The relaxed atomic positions were then used to calculate the total energies of the intercalated and bare MXenes. The
chemical potential of the intercalating ion was also determined. We calculated the quantities such as the theoretical
gravimetric capacity, adsorption energies and the open circuit voltages (OCV). Using M as an intercalant, we can
represent the following general chemical reaction as

Y2C + 2M → Y2CM2. (1)

The adsorption energy of intercalated species can be obtained as

Ead = E [Y2CM2] − E [Y2C] − 2µ [M] (2)

where E [Y2C], E [Y2CM2] and µ [M] are the respective total energies of pristine, intercalated MXene and the chemi-
cal potential of the intercalants.

The theoretical gravimetric capacity and OCV are given by the respective equations [25, 65]

Qg =
xnF
m

(3)

V =
E [Y2C] + xµ [M] − E [Y2CM2]

xne
(4)

where n represents the valence state of fully ionized cations from the electrolyte [65], specifically, n = 1 for Li, n = 2
for Mg and n = 3 for Al. We used the concentration (x = 2) for the intercalated MXenes monolayers. In equation (3),
F, e and M represent the Faraday constant (26801mAhg−1) electronic charge and the molar mass or chemical weight
of the intercalated MXene sheets.

Figure 1. (a) Mono-layer of bare Yttrium carbide MXene (Y2C) (b) Intercalation of Yttrium carbide MXene with Mg-ion (Y2CMg2).
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Figure 2. (a) Projected density of states. (b). Energy band diagram of bare Y2N.

Table 1. Open circuit voltage, adsorption energy and theoretical gravimetric capacity of intercalated Yttrium carbide/nitride-based MXenes

MXene Open circuit Voltage(V) Theoretical gravimetric Capacity (mAh/g) Adsorption energy (eV)
Y2CLi2 0.06 263.138 -0.12
Y2NLi2 0.08 260.585 -0.16
Y2CMg2 0.02 449.619 -0.07
Y2CAl2 -0.43 659.909 2.60

3. Results and Discussion

The lattice parameter of the bare MXenes changes when metal ions are diffused into their surfaces. For the
bare MXene Y2C, the lattice parameter is found as 3.60A. After intercalation with Mg, Al and Li ions, the lattice
constants expand by 19.44% for Y2CMg2, 13.89% for Y2CAl2 and Y2CLi2. The changes in the lattice parameters
have been linked to the ionic radius of intercalating species and lateral electrostatic repulsion after ion intercalations
[25]. The bare MXenes Y2C (see Ref [26]) and Y2N (see Figure 2) are metallic with the 3d electrons of Y-atom
majorly contributing to electrical conductivity. The metallic nature of the bare MXenes indicates that they have an
intrinsic advantage for high-performance electrode materials [65]. In Table 1, we presented the theoretical gravimetric
capacities, open circuit voltages and adsorption energies for the Y2CLi2, Y2NLi2, Y2CMg2 and Y2CAl2 MXenes with
Al and Mg intercalated MXenes having the highest values of 659.909mAh/g and 449.319mAh/g respectively. The
high values compared to the lithiated MXenes can be attributed to the multivalence states of the Mg and Al ions.
The theoretical gravimetric capacity of Y2CLi2 MXene is slightly higher than that of Y2NLi2 due to its lighter molar
weight. The respective OCVs and the adsorption energies are positive and negative for Y2CLi2, Y2NLi2, Y2CMg2
which may be an indication of a favourable condition for battery applications. The nitride-based MXene has a higher
OCV than the corresponding carbide MXene due to the extra electron of the nitrogen atom and higher adsorption
energy. For the Y2CAl2 MXene, the respective OCV and adsorption energy is negative and positive making the MXene
system unsuitable for energy storage application. Generally, the OCVs increase with a decrease in the theoretical
gravimetric capacities for all MXenes. Also, the intercalated bare MXenes have been found in [25] to have open
circuit voltage characteristics of 0 − 1.0V which is consistent with the present results. This low voltage window has
been found to prevent dendrite formation by alkaline metals during the discharge and charge processes [65, 66].

4



Omugbe et al. / African Scientific Reports 2 (2025) 88 5

4. Conclusion

We have presented a study on the screening of intercalated bare MXenes for possible application in metal ion
batteries. We used the DFT method to determine the total energies of the MXenes Y2C and Y2N, Y2CLi2, Y2NLi2,
Y2CMg2 and Y2CAl2. The bare MXenes are metallic which allows their usage for high-performance electrode ma-
terials. We found a linear correlation between the calculated theoretical gravimetric capacities and the OCVs. The
obtained OCV falls within the range of 0− 1.0V which have been reported to eliminate dendrite formation by alkaline
metals during the discharge and charge process. The results revealed that the metal ion and the X sites of the MXene
materials is responsible for the OCV characteristics. Furthermore, our results are consistent with the works reported
in existing literature [25, 65] where the authors studied similar MXene materials. These findings may contribute to
the understanding of electrochemical properties of 2D material and we recommend Y2CLi2, Y2NLi2, and Y2CMg2
for future investigation as potential materials for rechargeable batteries.
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