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Abstract

An optimized half-step third derivative block scheme on testing third order initial value problems is presented in this article.
This scheme suggests some certain points of evaluation which properly optimizes the truncation errors at point of formulas, the
conditions that guarantee the properties of the method was considered and satisfied. However the develop scheme is used to test
some third order optimized problems and the mathematical outcomes achieved confirms better calculation than the previous method
we related with.
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1. Introduction

This article consider a direct solution of third order problems given by

¥ = f (6 300,5/ (9),3(50) = yo, ¥ (x0) = ¥ )
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on optimizing half-step hybrid method with the same off grid point. An efficient third derivative for solving optimized
problems (1) is possible to yield a good accuracy and stability region for it to perform better according to [1]. Several
areas of real live problems often arises in control and modeling of spread disease, vibration of strings, heat and mass
transfer, flows of fluid, sciences and engineering, circuits electric models etc uses equation (1) in solving problems
relating to them.

An optimized half-step block method proposed in this article for solving (1) where some researchers applied the
reduction method before adopting it. However, this process can only compute the numerical solution at one point at
a time and time constraint [2, 3]. Therefore, some scholars who newly applied the direct method to overcome the
difficulties in reduction process in literature include [4, 5, 6].

Some researchers have proposed some methods in literature for solving (1), viz. [7] use interpolation and collo-
cation procedure to develop a two-step continuous hybrid block method with two intra-step points, the optimization
of local truncation error using two-step continuous block method was presented by [8], and [9] also adopt the uses of
“optimization approach to form a two-step second derivative methods for solving of stiff systems”.

An optimized half-step third derivative with equal equidistant points in this research was applied in block form
through the collocation procedure to obtain the main scheme; the derivative will be evaluated at the last point of the
block which is half.

The development of the article is as follows: the next section shows the methodological development of the
optimized half-step. The basic conditions of the method are analyzed; these are convergence and stability region,
numerical experiments. The effectiveness of the scheme is confirmed on some stiff mathematical samples and the
result is discussed in Section 3. Section 4 is the conclusion.

2. Derivation of the Method

The continuous representation of half-step method which we shall derive will be used to generate the main method
which we shall set up to obtain the block method. An estimate of power series given by

2 1/2
YO = 3 Wivnei + 12| D i + ¢kfn+k} k=, w @
i=0 j=0

is considered, where i;(t), ¢ (1), ¢x (&) are polynomials, y,,; = Y(Xpej), furj = f (x,H 2 Vn+ j), &= % Equation (2) is
obtained by using the power series approximate solution of the form

s+r—1

Y= ) gl 3)

J=0

The interpolation point » = 3 and collocation points s = 5 were carefully considered to solve equation (1).

yn+j=y(xn+j), jZO,M,V

y” (xn+j) = forjr J=0,uv, w3 @
By differentiating (3) thrice we obtain
s+r=1 ajl
¥ () = ; R E 8)
Substituting (5) into (1) yield
N <R 7)
fxy,y") = mf’ (6)
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Equation (6) is collocated at all points x4, s = 0,u, v, w, % and (5) is interpolated at x,,.,, 7 = 0, u, v,, to yield a system
of non linear equation of the form

10000 0 0 0]
0100 0 0 0 0 |py [y
00100 0 0 0] ¥
000 1 1 1 1 11| ¥
0000 u v w 1% bl |, -
0000 £ & » () [[24] ™| foeu
o bs| | fowr
0000 =2 2 w Qb Jovw
3131 30 (i‘r Lb7]  Lfus1/2]
00 00 @ = w» 1)

In order to find the unknown values u, v, w for b;’s, we solve equation (7) using Gaussian elimination method to yield
a continuous hybrid linear multistep method of the form
1/2

PR = > Uy + b Z¢jﬁq+,-+¢kfn+k}, k= uv,w. @®)
i=0

J=0,u,v

The coefficient of y,.;, j = 0,u,vand f,.;, j = 0,u,v,w, % gives

Vi D WiOW) + 1| GO+ B s + SO + 8O o + BLOF 1 ©)
i=0,u,v
where ¢ = =, % =3
Yo =1 (10)
Yy = é:
1
Uy, = Efz
1 (-105u — 105v¢ + 4282 — 988> + 64" + 196u&? — 112ug® + 196v¢> — 112v€° + 420uv — 490uve + 224uve?)
0= 3530°
uy
4
b1 = ! ¢ (425 — 105v + 196 — 98£% + 64&3 — 112v§2)

840u (u — v)(16u? — 14u + 3)

1 &
=- 42¢ — 105u + 196ué — 982 + 64&° — 112ué?
s 840v(u—v)(16v2—14v+3)( 3 u+196ug — 985" + 648 ug)

_ 256 & > 3 2 2
b3 = 315 G 3G =3 (7€ - 14vE — 14ug - 88" + 14u€” + 14v€” + 35uv — 28uvé)

1 & 2 3 2 2
—_— 2 (21&% — 42vE — 42uE - 32 1 -112
105 i~ D@ =D ( & vé ué — 32&° 4+ 56ué” + 56vé- + 105uv uvf)

Evaluating the first and second derivative of (9) at all points and substituting the value of w = 3/8 we obtain equations
(10) and (15) as shown in Tables 1 and 2, respectively.

P4 =

We obtain the hybrid block multistep formula by substituting w = 3/8 and £ = 1/2 in (9) to approximate the
solution of (1) which then yield

1 1 70v-9
Ja (_ so6a0 (/0 +70v — 924uy — 9)) + fotu (_ 76880u (ufv)(161:2714u+3))
’ 2.7 3 — - &
Yur1j2 = Yut 5V gHOY A |+ fur (26818014 (u—v)(3232—914v+3)) + Jn+3/8 (_315(8u—43)(8v—3)(14“ + 14v — 84uy — 3)) an
+fn+|/2 (m(ZSM + 28y — 196uy — 5))
3
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Differentiating (11) once and then substituting w = 3/8 and £ = 1/2, we obtain the approximate formula of the first
derivative as

1 Tv—1
f"( T30 (/1 + Tv = 80uv 1))+fn+u( 672Ou2v—7680u3v—l440uv+l440u2—6720u3+7680u4)

’ o 1.7 2 Tu—1
Yne12 = Yn + 20 + B+ o G0 7680m 1490w+ 1330767207 176507 (12)
+f ( 64u+64v—320uv—16 )+ f ( 6u+6v—40uv—1 )
n+3/8 \ T080u+1080v—2880uv—405 n+1/2 \ 480u+480v—960uv—240

Differentiating (9) once and then substituting w = 3/8 and £ = 1/2, we obtain the approximate formula of the
second derivative as

__ 1 _ _ _ 20v-3
I ( Taa0m (20u + 20v — 200uv 3)) + fatu ( 6720u2v—7680u3v—1440uv+1440u2—6720u3+7680u4)

’” o 20u—-3
Yurija = Yo F [ +fary (6720uv2—7680uv3—1440uv+1440v2—6720v3+7680v4) (13)

+f ( 320u+320v—1280uv—96 )+f ( 40uv-3 )
n+3/8 \ T080u+1080v—2880uv—405 n+1/2 \ 240u+240v—480uv—120

Now we choose to optimize the local truncation error by determine the approximate values of u# and v in the
formulas (8), (9) and (10) which are related to the off-grid points of the hybrid multistep method. To advance to the
next block, the values of y/’ 1 Vhot P and y,.1,» will be needed for the computation, therefore the local truncation
error is consider using formula (8), (9) and (10) which yield

1
L h|= ————— (—18u—1 14 o 14
[v(x); A 103219200( 8u — 18v + 140uv + 3) + O(h") (14)
’ . _ _ _ 9
L[y (x);h] = —25804800( 28u — 28v + 196uv + 5) + O(h°)
1
L[y’(x);h] = 8232900 (—=6u — 6v + 40uv + 1) + O(h°)

Equating (15) to zero gives the principal term of the local truncation errors, hence we need to obtain the values of our
unknown parameters which is # and v as in Ramos et al. (2015)

—18u —18v + 140uv+3 =0 (15)
—28u —28v + 196uv +5=0
—6u—6v+40uv+1=0

Solving for u and v in (15), we obtain u = & V114 — L and v = —355 V114 — 2 in which correspond to
the plane curve that are symmetric with respect to the diagonal u = v and has a unique constraint 0 < u < v <
3/8 < 1/2, substituting these values into (11) gives three formulas, one for approximating the solution, and the
other two for approximating the first and second derivative at point x,.1,2, hence we shall have twelve unknown
(y,,+ Vi P hAR P j=u,v,3/8,1/ 2). To obtain the half-step hybrid block method for solving (1), we need to consider
the evaluation and at all the point to simplify the three formulas above which produces the following general equations
in block form )

AOYD =" YD + WO (gif () + pif ) (16)
i=0
Yz(r? = [)’Zw Yisu Ynt3/8 y;1+1/2] ’ yf? = [yim Yieu Yn-3/8 y;l]

I = o Fi Biaas i s £ = [ i fia fis 1]

and A = 4 X 4 is identity matrix.
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Wheni =0,
0001 000 _238099098 000 —22?4[3}0
00 01 000 _10050070 000 _2550707070
ey = , €1 = 3 , €2 =
0 0 01 0 00 5 000 %
000 1 000 3 000 g
0 0 0 677 11383 _ 5749 _ 53859 7919
00 0 _15?%899 5007020807000 3)00301010000 _10098(5)88000 500201%01000
— 100000 — 1 0 500000 100000000 2000000
£ 000 2%%00 P 2?88280 _5012850100 _109§1§§00 1008 87%)8000
00 0 By 90080 5099999 gosls 599
10000000 1000000 1000000000 5000000 40000000 *
Wheni=1,
l 0001 00 0 5% 00 0 oo
29009, 29550
eD:ooo 1 e1=000—100000 glzooo Tk
0 0 0 1f 0 0 0 % ’ 0 00 %
0001 000 3 00 0 25
13959 _ 7323 _ 5797 16883
2599998 IZEPPP000 3980000 S0000p00
pr=| gfgeoo 100pp0p0 1399990 2899
210 102070 3 1%%%%00 1029402010100 10070(?70000
200000 250000000 1000000 5000000000 *
Wheni =2,
00 0 1 0 0 0 34039 98231 _ 34753 _ 1869 42879
00 0 1 0 0 o T OO Q80 T 1999000
“=lo 0 0 1120 0 o ARP| p=|TEP _THW A T
00 0 1 00 0 Rl 2090 1009909000 30988 19099%°
1000000 625 500000000 100000 1000000

3. Analysis of Basic Properties of the Method

3.1. Order of the Block
Consider the linear operator L{y(x) : h} associated with the discrete block method (16) be defined

2
LU0 by = ACY), = " Hel, = 1 (&ifGu) + pif Gm) (17
j=0
Using Taylor series to expand (17) and the coefficient of & are compared to give
Liy(x) : h} = Coy(x) + C1y' (x) + « -+ + CohPYP(x) + Cput K7 IyPH () + Cpanh? 9P 2 (x) + - -

Definition: Linear operator L and associated block formula are said to be of order p if Cyp = C; = C, = Cpyy =
Cpio = 0, and Cpy3 # 0. Cpy3 is called the error constant and implies that the truncation error is given by
tusk = Cpash?*3y73(x) + O (hP4),

For our method, expanding (16) in Taylor series, and comparing the coefficients of / gives Cp = C; = C, = C3 =

---=Cy=0and
_ 3133248341987641235360959768917 _ 23529667578922765111999345314414644817 53250747273
RETAOO0000000Q$RgPO00000 AT~ 2270000000000EASHAYEARARO000000000000” 771 TTRSEAEAER 0
TR RO ToR00p000000000000 000G |
o ST, 0000000 TSS9 AR90000000000
7200000000000000000000000000000000000 ° 262144000000000 ° 37869881036063232000000000

Hence our method is of order six (6).
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3.2. Consistency
The optimized scheme (16) is consistent, since it has order more than or equal to one.

3.3. Zero Stability of Our Method

Definition 2:

A third derivative optimized scheme is said to be zero-stable, if the roots z;,i = u,v,3/8, 1/2 of the first charac-
teristic polynomial p(z) = O that is p(z) = det [ZI;:O A(i)zk‘i] = 0 satisfies |z;] < 1 and for those roots with z; = 1,
multiplicity must not exceed two. Hence, our method is zero-stable.

3.4. Consistency
Theorem 3.1[6]

The compulsory and adequate terminologies for the optimized scheme to be convergent are that they must be
consistent and zero-stable. Hence, the optimized scheme derived is convergent since all conditions are satisfied.

3.5. Linear Stability
The concept of A-stability according to Hairer and Wanner is discussed by applying the test equation

Yk = a®y (18)
to yield
Yy = u@Yp-1,2 = Ah (19)
where p(z) is the amplification matrix given by
-1
@ = (&~ =) (€'~ ~ ). (20)
The matrix w(z) has eigen values (0,0, - - - , &) where & is called the stability function.

Thus, the stability function for half-step optimize third derivative method with three offgrid hybrid points is given
by
(327 + 142° + 1432° + 5712% + 24642° + 895022 + 20160z + 20160)

= . 21
¢ (320 + 512° + 453z* + 255023 + 927022 — 20160z + 20160) @D

3.6. Regions of Absolute Stability
The stability polynomial of the optimized scheme is found to be

B 12( 30304968990455678983 Wt 16289978146044407871 w3)
1000000000000000000000000000000000 10000000000000000000000000000000
B 9( 8199533764251297150317 W 54017378594461649 w4)
1000000000000000000000000000000 100000000000000000000000000

3.7. Mathematical computation of the method
Sample I: The highly stiff system solved by [8] is given as

y"” =3sing, y(0) =1, y(0) =0, y"(0) = -2.

Exact Solution: y(g) = 3cosg + % -2,h= 11—0 The solution for Sample I are shown in Table 1.
Sample II the third order ODE solved by [5] is given by

Y ==4y' +g, y0)=1, y'(0) =1

Exact Solution: y(g) = 13—6 (1 —cos2g) + %, h = The solution for Sample I are shown in Table 1.

6

L
10°
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Figure 1. Showing the Region of Absolute Stability of our optimize scheme

Table 1. Showing the Result for sample 1

g-values  Error in our method  Error in [8]

0.1 2.1291 e-15 4.1078e-15
0.2 1.8981 e-15 1.6875e-14
0.3 1.9821 e-15 5.0848e-14
04 1.9639 e-14 1.1779e-13
0.5 1.7857 e-14 2.4081e-13
0.6 2.5981 e-14 4.3709e-13
0.7 2.4938 e-14 7.3708e-13
0.8 3.4447 e-14 1.1662e-12
0.9 4.5861 e-14 1.7587e-12
1.0 27518 e-14 2.5466e-12

Table 2. Showing the Result for sample 2

g-values  Error in our method  Error in [5]

0.1 2.55208 e-12 2.970e-08
0.2 3.64210e-12 1.988e-07
0.3 4.5313 e-12 6.508e-07
0.4 1.3406 e-12 1.5480e-06
0.5 3.28547 e-12 3.062e-06
0.6 4.59125 e-12 5.3625e-06
0.7 547318 e-12 8.6068e-06
0.8 1.96524 e-12 1.2926e-05
0.9 2.34526 e-12 1.8118e-05
1.0 2.55587e-12 2.5129e-05
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4. Conclusion

The optimized half-step hybrid block third derivative method derived in this work was implemented efficiently.

Maple 18 software was used for the implementation while the scientific workplace 5.5 version was used for the
derivation of the optimize hybrid methods. The graphical representation was also generated with the aid of MATLAB
2021a programming language. The optimized results obviously converge quicker than the recent result of [5 and 8].
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