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Abstract

An inflammatory disease resulting in the pathological constriction of the intima and media of the arterial system, such as the aorta,
causes symptoms like stroke, heart attack, or angina; This research investigates the convective flow of blood through a constricted
cylinder and the effect of cholesterol growth rate on the motion in the presence of a magnetic field by transforming the problem into
a system of time-dependent partial differential equations. The governing partial differential equations (PDEs) were transformed
into dimensionless ordinary differential equations (ODEs) and solved using the Laplace method. After obtaining the analytical
solution, Wolfram Mathematica was used to perform the numerical computation where the various physical parameters such as
Soret number, radiation number, solutal Grashof number, Schmidt number, and Prandtl number were varied to their impact studied.
The study discovered that increasing the Soret number causes an increase in blood velocity, whereas decreasing the Solutal Grashof
number decreases blood velocity. Furthermore, an increase in radiation parameter increases the blood velocity, but a Soret number
increase results in a decrease in the concentration of cholesterol in the fluid, a Schmidt number, and oscillatory frequency increase,
causing the temperature to decrease. This research is useful for clinicians and mathematical modellers who are trying to understand
the flow of cholesterol saturated fluid in the human vascular system and how best to proffer analytical and numerical solutions in
synergy with laboratory investigation.
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1. Introduction

Atherosclerosis is an inflammatory disease resulting in the pathological constriction of the intima and media of the
arterial system, such as the aorta, causing symptoms like stroke, heart attack, or angina. Atherosclerosis is the leading
cause of death in western societies. It is characterized by an accumulation of excessive cholesterol and inflammatory
cells and lipids in the intima and media, leading to their thickening and hence to a constriction of the arterial lumen.
It is now well accepted that a significant first step in the initiation of the early atherosclerotic process is a dysfunction
of the endothelium, allowing the penetration of low-density lipoproteins (LDL) through the monolayer of endothelial
cells into the vessel wall. Therefore, the role of the endothelium is crucial since it acts as a transportation barrier
between the lumen and the intima. According to Bunonyo et al. [1], LDL in the vessel wall is prone to oxidative
modifications, initiating the inflammatory processes. Below is some research that talks about atherosclerosis and
constriction. They are: Ambrosi & Mollica [2] studied tumor growth within the framework of continuum mechanics,
considering a tumor as a specific case of growing soft tissue. They used the notion of multiple natural configurations
in which they introduced a mechanical description that splits volumetric growth and mechanical response into two
separate contributions. Growth is described as an increase in the mass of the particles of the body and not as an
increase in their number. The finding that tumor growth strongly depends upon the availability of nutrients and the
presence of chemical signals, such as growth factors, their diffusion through the growing material is introduced in the
description. According to Balzani and Schmidt [3], there are several damage equations that analyze the properties of
atdamage initialization. The study is important for soft tissues since two different loading regimes have to be clearly
distinguished: the physiological domain where no damage evolution should be considered and the supra-physiological
domain wheredamage evolves. Barrenechea & Valentin [4] used an unusual stabilized finite element that is presented
and analyzed to investigate a generalized Stokes problem with a dominating zeroth order term. The method consists
of subtracting a mesh-dependent term from the formulation without compromising consistency. The design of this
mesh-dependent term, as well as the stabilization parameter involved, is suggested by bubble condensation. Stability is
proven for any combination of velocity and pressure spaces, under the hypothesis of continuity for the pressure space.
Bazilevs et al. [5] elucidated left ventricular assist devices (LVADs) as continuous flow pumps that are employed
in patients with severe heart failure. Although their emergence has significantly improved therapeutic options for
patients with heart failure, detailed studies of the impact of LVADs on hemodynamics are notably lacking. They
initiated a computational study of the Jarvik 2000 LVAD model employing isogeometric fluid–structure interaction
analysis. Brown et al. [6] investigated the major causes of morbidity and mortality worldwide and said that a thorough
understanding of the underlying pathophysiological mechanisms is crucial for the development of new therapeutic
strategies. Although atherosclerosis is a systemic inflammatory disease, coronary atherosclerotic plaques are not
uniformly distributed in the vascular tree. Calvez et al. [7] used a mathematical model to describe the early formation
of atherosclerotic lesions. According to the investigator, the early stage of atherosclerosis is an inflammatory process
that starts with the penetration of low-density lipoproteins into the intima and with their oxidation. This phenomenon
is closely linked to the local blood flow dynamics. Chalmers et al. [8] investigated the birfucation and dynamics
in a mathematical model of early atherosclerosis. The study involved the interactions between modified low density
lipoprotein (LDL) and monocytes or macrophages. This model suggests that there is an initial inflammatory phase
associated with atherosclerotic lesion development and a longer, quasi-static process of plaque development inside the
arterial wall that follows the initial transient. Chen and Lu [9] elucidated the pulsatile flow of non-Newtonian fluid in
a bifurcation model with a non-planar daughter branch numerically by using the Carreau–Yasuda model to take into
account the shear thinning behavior of the analogue blood fluid. The objective of this study is to deal with the influence
of the non-Newtonian property of fluid and of out-of-plane curvature in the non-planar daughter vessel on wall shear
stress (WSS), oscillatory shear index (OSI), and flow phenomena during the pulse cycle. The calculated results for
the pulsatile flow support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood
are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.
According to Cheng et al. [10], wall shear stress (WSS), the frictional force between blood and endothelium, is an
important determinant of vascular function. It is generally assumed that WSS remains constant at a reference value
of 15 dyn/cm2. In a study of small rodents, they realized that this assumption could not be valid. Cho and Kensey
[11] studied the effects of the non-Newtonian viscosity of blood on the flow in a coronary arterial cast of a man were
studied numerically using a finite element method. They investigated the various constitutive models to model the
non-Newtonian viscosity of blood and their model constants were summarized. A method to incorporate the non-
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Newtonian viscosity of blood was introduced so that the viscosity could be calculated locally. Cilla [12] investigated
atherosclerosis as a vascular disease caused by inflammation of the arterial wall, which results in the accumulation
of low-density lipoprotein (LDL) cholesterol, monocytes, macrophages, and fat-laden foam cells at the site of the
inflammation. This process is commonly referred to as plaque formation. The evolution of atherosclerosis disease,
and in particular the influence of wall shear stress on the growth of atherosclerotic plaques, is still a poorly understood
phenomenon. Codina [13] presented a stabilized finite element method to solve the Navier–Stokes equations based on
the decomposition of the unknowns into resolvable and subgrid scales. The first is a method to estimate the behavior
of the stabilization parameters based on a Fourier analysis of the problem for the subscales. Secondly, the way to
deal with transient problems discretized using a finite difference scheme is discussed. Finally, the treatment of the
nonlinear term is analyzed. Crosetto et al. [14] used the numerical tools to simulate blood flow in the cardiovascular
system that are constantly developing due to the great clinical interest and to scientific advances in mathematical
models and computational power. De Wilde et al. [15] studied the low and oscillatory wall shear stresses near the
aortic bifurcation linked to the onset of atherosclerosis. The studies were based on simulations of boundary conditions
measured under anesthesia. Moradicheghamahi et al. [16] investigated the risk factor at the carotid bifurcation as a
result of the changes in the flow of blood and phenomena such as flow separation, rotational flow, and the effects of
the shear stress induced by the walls, increasing the risk of injury. The study numerically simulates the pulsatile flow
of the blood in a patient-specific elastic carotid artery with physiological pulses and non-Newtonian and turbulent
models. Hanvey and Bunonyo [17] carried out an investigation into the influence of treatment parameters on the flow
of blood in a stenosed artery in the presence of a magnetic field with heat transfer. They solved the momentum equation
governing by scaling it to a dimensionless structure with the aid of some dimensionless parameters. The equations
have been analytically solved using the modified Bessel equation and by the method of undetermined coefficients
in order to obtain the temperature profile and velocity profile of the blood flow. The model analysis and results are
presented graphically with the help of the software Mathematica. Kubugha and Amos [18] used a mathematical model
to investigate LDL-C and blood flow through an inclined channel with heat in the presence of a magnetic field. In
their research, mathematical models were formulated to represent LDL-C and blood flow and energy transfer as a
coupled system of partial differential equations (PDEs). The PDEs were scaled using the dimensionless quantities
to dimensionless partial differential equations. They further reduced the equations to ordinary differential equations
(ODEs) using the perturbation method involving the oscillatory term. Thereafter, governing equations are solved
directly using the method of undetermined coefficient. The above literature failed to address the convective flow
of blood through a constricted cylinder and the effect of cholesterol growth rate on the motion in the presence of a
magnetic field. The goal of this research is to formulate coupled mathematical models that represent the problem,
solve the transformed equations using the Laplace method, and perform numerical simulation using Mathematica, to
investigate the impact of the thermo-physical parameters on the flow profiles.

2. Mathematical Formulation

Consider a convective flow of blood, an electrically conducting, and incompressible viscous, and non-Newtonian
fluid, flowing through an atherosclerotic artery presumed to be a cylindrical channel with a velocityw∗ (r∗, x∗), where
r∗ and x∗indicating the direction of the flow, and the channel is filled with cholesterol-laden fatty substances which
grows exponentially. The tangential velocity is assumed to be zero and the pressure is generated towards the axial
direction. We assume the application of perpendicular external magnetic field. Following Bunonyo and Ebiwareme
[19], we present mathematical representation of atherosclerotic geometry and the governing equations as follows:

2.1. The geometry of constriction

R =

{
R0 −

δ∗

2

(
1 + cos 2πx∗

λ∗

)
at d0 ≤ x∗ ≤ λ∗

R0 at 0 ≤ x∗ ≤ d0
(1)

where

x∗ =

(
d0 +

λ∗

2

)
(2)
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2.2. Momentum Equation

ρb
∂w∗

∂t∗
= −

∂P∗

∂x∗
+ µb

(
∂2w∗

∂r∗2
+

1
r∗
∂w∗

∂r∗

)
−
µbϕ

k∗
w∗ − σB2

0w∗ + ρbgβC (C∗ −C∞) (3)

2.3. Heat Equation

ρbcb
∂T ∗

∂t∗
= kTb

(
∂2T ∗

∂r∗2
+

1
r∗
∂T ∗

∂r∗

)
− Q0 (T ∗ − T∞) (4)

2.4. Concentration Equation

∂C∗

∂t∗
= Dm

(
∂2C∗

∂r∗2
+

1
r∗
∂C∗

∂r∗

)
+

DT kT

Tm

(
∂2T ∗

∂r∗2
+

1
r∗
∂T ∗

∂r∗

)
(5)

The corresponding initial and boundary conditions are

w∗ = 0,T ∗ = Tw,C∗ = Cw at r∗ = R
w∗ , 0,T ∗ , T∞,C∗ , C∞ at r∗ = 0

}
(6)

2.5. Dimensionless Parameters

x = x∗
λ∗
, r = r∗

R0
, t = t∗υb

R2
0
,w =

w∗R0
υb
, θ = T ∗−T∞

Tw−T∞
, S r = DT kTb

υbTm

(
Tw−T∞
Cw−C∞

)
,

Rd1 =
Q0R2

0
µbcb

,Gc =
gβC (Cw−C∞)R3

0

υ2
b

,M = B0R0

√
σ
µb
, 1

k =
ϕR2

0
k∗ , r = h

S c = υb
Dm
, δ∗ =

δR0eat

RT
, Pr =

µbcb
kTb

, P =
R3

0P∗

λ∗µbυb
, φ = C∗−C∞

Cw−C∞
, δ

R0
� 1

 (7)

Reducing the governing equations (1)-(6) using equation (7), we have the following:

R
R0

=

{
1 − δ

2RT
eat (1 + cos2πx) at d0 ≤ x∗ ≤ λ∗

1 at 0 ≤ x∗ ≤ d0
(8)

where
x =

1
λ

(
d0 +

λ

2

)
(9)

∂w
∂t

= −
∂P
∂x

+

(
∂2w
∂r2 +

1
r
∂w
∂r

)
−

1
k

w − M2w + Grθ + Gcφ (10)

Pr
∂θ

∂t
=

(
∂2θ

∂r2 +
1
r
∂θ

∂r

)
− Rd1Prθ (11)

S c
∂φ

∂t
=

(
∂2φ

∂r2 +
1
r
∂φ

∂r

)
+ S rS c

(
∂2θ

∂r2 +
1
r
∂θ

∂r

)
(12)

The corresponding boundary conditions are

w , 0, θ , 0, φ , 0 at r = 0
w = 0, θ = 1, φ = 1 at r = R

R0

}
(13)
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2.6. Reduction of the Governing Equations to ODEs
Since the pressure is generated by the ventricular action in the axial direction, the governing equations can be

reduced to ODEs by adopting the following:

w (r, t) = w0 (r) eiωt, θ (r, t) = θ0 (r) eiωt

φ (r, t) = φ0 (r) eiωt,− ∂P
∂x = P0eiωt

}
(14)

Following equation (14), the governing equations (10)-(13) are reduced to:

d2w0

dr2 +
1
r

dw0

dr
− β2

1w0 = P0 −Gcφ0 (15)

d2θ0

dr2 +
1
r

dθ0

dr
− β2

2θ0 = 0 (16)

d2φ0

dr2 +
1
r

dφ0

dr
− β2

4φ0 + S rS c
(

d2θ0

dr2 +
1
r

dθ0

dr

)
= 0 (17)

The corresponding boundary conditions are

w0 , 0, θ0 , 0, φ0 , 0 at r = 0
w0 = 0, θ0 = e−iωt, φ0 = e−iωt at r = R

R0

}
(18)

3. Method of Solution

We would solve equations (15)-(17), subject to the boundary conditions in equation (18) using the Laplace method.
The method can be stated as follows:

L {w0 (r)} = w0 (s) =

∫ ∞

0
w0 (r) e−rsdr (19)

L {θ0 (r)} = θ0 (s) =

∫ ∞

0
θ0 (r) e−rsdr (20)

L {φ0 (r)} = φ0 (s) =

∫ ∞

0
φ0 (r) e−rsdr (21)

To solve equation (16), we would adopt equation (20), which can be applied as follows:

L
{

r
d2θ0

dr2

}
+ L

{
dθ0

dr

}
+ β2

21L {rθ0} = 0 (22)

whereβ21 = iβ2
Simplifying equation (22), we have

L
{

r
d2θ0

dr2

}
+ L

{
dθ0

dr

}
+ β2

21L {rθ0} = 0 = −
d
ds

(
s2θ0 (s) − sθ0 (0) − θ̇0 (0)

)
+ sθ0 (s) − θ0 (0) − β2

21
dθ0

ds
(23)

Simplifying equation (23), we have
dθ0

ds
+

s(
s2 + β2

21

)θ0 (s) = 0 (24)

Solving equation (24), we have

θ0 (r) =

(
e−iωt

I0 (β2h)

)
I0 (β2r) (25)

whereJ0 (iβ2r) = I0 (β2r)
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To obtain the temperature profile of the fluid, we substitute equation (25) into equation (14), we have

θ (r, t) =

((
e−iωt

I0 (β2h)

)
I0 (β2r)

)
eiωt (26)

To investigate the impact of temperature effect on the cholesterol concentration, differentiate equation (25) twice and
substitute the result into equation (17), which is:

d2φ0

dr2 +
1
r

dφ0

dr
− β2

4φ0 = −
S rS ce−iωt

I0 (β2h)

β2
2 +

16β4
2r2

64
+

36β6
2r4

2304
+ ...

 (27)

Solving equation (27), the homogenous solution is:

φ0h (r) = A0I0 (β4r) (28)

The particular solution to equation (27) can be stated as:

φ0p (r) = A1 + A2r2 + A3r4 (29)

Solving equation (27), we obtained the solution as:

φ0 (r) = A0I0 (β4r) + A1 + A2r2 + A3r4 (30)

See appendix for all the constant coefficients.
The concentration profile is obtained after substituting equation (30) into equation (14), which is:

φ (r, t) =
(
A0I0 (β4r) + A1 + A2r2 + A3r4

)
eiωt (31)

To investigate the effect of concentration on blood momentum, we shall substitute equation (30) into equation (15),
which is

d2w0

dr2 +
1
r

dw0

dr
− β2

1w0 = P0 − A1Gc −
(
A0GcI0 (β4r) + A2Gcr2 + A3Gcr4

)
(32)

Applying equation (19) on the homogenous part of equation (32), this is:

L
{

r
d2w0

dr2

}
+ L

{
dw0

dr

}
+ β2

11L {rw0} = 0 (33)

Simplifying equation (33), we have

L
{

r
d2w0

dr2

}
+ L

{
dw0

dr

}
+ β2

11L {rw0} = 0 = −
d
ds

(
s2w0 (s) − sw0 (0) − θ̇0 (0)

)
+ sw0 (s) − w0 (0) − β2

11
dw0

ds
(34)

Simplifying equation (34), we obtained the homogenous solution as:

w0h (r) = L−1

 B3√(
s2 + β2

11

)
 = B3L−1

 1√(
s2 + β2

11

)
 = B3J0 (β11r) = B3J0 (iβ1r) (35)

Whereas the particular solution of equation (32) is as follows:

w0p (r) = A4 + A6I0 (β4r) + A7r2 + A8r4 (36)

The solution for equation (32) is as follows:

w0 (r) = B3I0 (β1r) + A4 + A6I0 (β4r) + A7r2 + A8r4 (37)
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Figure 1. Influence of Soret number on Blood Velocity with other value as Gc = 15, Pr = 2.1, S c = 2,Rd3 = 2,Rd1 = 2, ω = 0.3, k = 0.05,M =

1.5, x = 0.5 Gc = 15, Pr = 2.1, S c = 2,Rd3 = 2,Rd1 = 2, ω = 0.3, k = 0.05,M = 1.5, x = 0.5

Having simplified the concentration effect on blood velocity, the solution for equation (32) is:

w (r, t) =
(
B3I0 (β1r) + A4 + A6I0 (β4r) + A7r2 + A8r4

)
eiωt (38)

The volumetric flow rate can be calculated using the mathematical formula

Q = 2π
∫ r=h

r=0
w (r, t) rdr (39)

Using equation (39) to calculate the flow rate, we have:

Q = 2πeiωt
∫ r=h

r=0

(
B3rI0 (β1r) + A4r + A6rI0 (β4r) + A7r3 + A8r5

)
dr (40)

Simplifying equation (40), we have:

Q = 2πeiωt
(
B3hI1 (β1h) + A6hI1 (β4h) +

A4h2

2
+

A7h4

4
+

A8h6

6

)
(41)

4. Results

Here, we investigate the influence of the various parameters on the blood velocity profile and concentration profile
as shown in Figs 1-8. For the numerical simulation, the values of the suggested parameters are within the range such
as0 ≤ S r ≤ 10,0 ≤ Gc ≤ 25, 0 ≤ Pr ≤ 10,0 ≤ M ≤ 10, 0 ≤ S c ≤ 1,0 ≤ ω ≤ 2at the location in the arterial
channelx = 0.5.
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Figure 2. Influence of Solutal Grashof number on Blood Velocity with other values S r = 2, Pr = 2.1, S c = 0.2,Rd3 = 2,Rd1 = 2, ω = 0.3, k =

0.05,M = 1.5, x = 0.5 S r = 2, Pr = 2.1, S c = 0.2,Rd3 = 2,Rd1 = 2, ω = 0.3, k = 0.05,M = 1.5, x = 0.5

Figure 3. Influence of Prandtl number parameter on Blood Velocity with other values as S r = 2,Gc = 15, S c = 0.2,Rd3 = 2,Rd1 = 2, ω = 0.3, k =

0.05,M = 1.5, x = 0.5 S r = 2,Gc = 15, S c = 0.2,Rd3 = 2,Rd1 = 2, ω = 0.3, k = 0.05,M = 1.5, x = 0.5

181



Bunonyo & Amos / African Scientific Reports 1 (2022) 174–187 182

Figure 4. Influence of Radiation parameter on Blood Velocity with other values as S r = 2,Gc = 15, Pr = 2.1, S c = 0.2,Rd3 = 2, ω = 0.3, k =

0.05,M = 1.5, x = 0.5 S r = 2,Gc = 15, Pr = 2.1, S c = 0.2,Rd3 = 2, ω = 0.3, k = 0.05,M = 1.5, x = 0.5

Figure 5. Influence of Magnetic Field on Blood Velocity with other values as S r = 2,Gc = 15, Pr = 2.1, S c = 0.2,Rd3 = 2,Rd1 = 2, ω = 0.3, k =

0.05, x = 0.5 S r = 2,Gc = 15, Pr = 2.1, S c = 0.2,Rd3 = 2,Rd1 = 2, ω = 0.3, k = 0.05, x = 0.5
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Figure 6. Influence of Soret number parameter on concentration with other values as Pr = 2.1, S c = 0.2,Rd1 = 2, ω = 0.3, x = 0.5 Pr = 2.1, S c =

0.2,Rd1 = 2, ω = 0.3, x = 0.5

Figure 7. Influence of Schmidt number parameter on concentration with other values as Pr = 2.1, ω = 0.3,Rd1 = 2, S r = 2, x = 0.5 Pr = 2.1, ω =

0.3,Rd1 = 2, S r = 2, x = 0.5
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Figure 8. Influence of Oscillatory frequency parameter on concentration with other values as Pr = 2.1, S c = 0.2,Rd1 = 2, S r = 2, x = 0.5
Pr = 2.1, S c = 0.2,Rd1 = 2, S r = 2, x = 0.5

5. Discussion

Figure 1 illustrates the influence of Soret numberS r = 1, 2, 3, 4, 5on the blood velocity at the locationx = 0.5.
It is observed that the velocity increases for each value of the Soret number, as depicted. Figure 2 shows the in-
fluence of solutal Grashof number,Gc = 5, 10, 15, 20, 25on blood velocity passing through the segment x = 0.5. It
was observed that the velocity increases for each value of the Grashof number, as seen. The influence of Prandtl
number was investigated and the simulation is shown in Figure 3. The figure shows the influence of Prandtl num-
ber Pr = 2.1, 2.2, 2.3, 2.4, 2.5on blood velocity as it passes through the location. It is seen that an increase in
Prandtl number causes the blood velocity to decrease. Figure 4 explains the influence of the radiation parameter
valueRd1 = 2, 4, 6, 8, 10 on blood velocity passing through the locationx = 0.5. It was observed that radiation in-
creased caused the blood velocity to increase for different radiation parameter values, which agrees with Bunonyo
and Eli [20]. Figure 5 explains the influence of the magnetic field parameter valueM = 2, 4, 6, 8, 10 on blood ve-
locity through the locationx = 0.5.. We noticed that the blood velocity decreases for every increase in a magnetic
field. The application of applied magnetic field plays a vital role in the study of blood flow because it can be
used as a treatment for heart-related diseases. This result agrees with previous research by Hanvey and Bunonyo
[17], as well as Bunonyo and Ebiwareme [19]. The study investigated the influence of Soret number on choles-
terol concentration with the result shown in Figure 6; the figure is of the view that the concentration decreases
with the increase in different values of the Soret numberS r = 1, 2, 3, 4, 5at the location atx = 0.5. Figure 7 illus-
trates the influence of the Schmidt numberS c = 0.2, 0.4, 0.6, 0.8, 1.0on cholesterol concentration in the fluid flow
passing through a particular locationx = 0.5. It explains that the concentration decreases for every increase in
Schmidt number, and this result agrees with Misra and Adhikary [21]. Figure 8 depicts the influence of the oscil-
latory frequencyω = 0.3, 0.4, 0.5, 0.6, 0.7on cholesterol concentration in the fluid passing through the location. It was
observed that the concentration decreased for various values of the oscillatory frequency.
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6. Conclusion

In this study, we have investigated the convective flow of blood through a constricted cylinder and the effect of
cholesterol growth rate on the motion in the presence of a magnetic field. On solving the governing mathemati-
cal models and performing numerical simulation using Wolfram Mathematica, the results are presented graphically.
Furthermore, the results have been discussed. We can conclude as follows:

• The blood velocity increased for an increase in sorbit to a maximum level before it decreased to zero when the
sclerotic level was high.

• The study revealed that the blood velocity decreased for an increase in solutal Grashof number and it reached a
peak before decreasing to a minimum value.

• It was revealed that the blood velocity decreases for an increase in Schmidt number, and it grew to a maximum
and converged to zero along the channel.

• The Prandtl number decreases the blood velocity as revealed in the result. However, the velocity increases due
to an increase in radiation parameter value.

• The magnetic field increase causes a decrease in blood velocity due to the Lorentz force generated.

• An increase in Soret number causes a decrease in cholesterol concentration in the fluid, and it converges when
the boundary layer is at its peak.

• The concentration decreases for every increase in Schmidt numbers along the channel.

• An increase in oscillatory frequency causes a corresponding increase in concentration.

This research could be extended by considering the flow in an inclined channel and could be solved using a series
method with time independency.
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Nomenclature

x∗ Dimensional coordinate along the channel
r∗ Dimensional coordinate perpendicular to the channel
R Radius of an abnormal channel
R0 Radius of normal channel
P0 Systolic pressure
Rd1 Radiation parameter
Rd3 Chemical reaction parameter
kTb Blood thermal conductivity
w∗ Dimensional velocity profile
w Dimensionless velocity profile
w0 Perturbed velocity profile
C∗ Dimensional lipid particle concentration
C∞ Far field cholesterol particle concentration
cbp The specific heat capacity of blood
t∗ Dimensionless time
T Temperature of the fluid
T ∗∞ Far field temperature
T ∗w Temperature at the wall
B0 Magnetic field
M Magnetic field parameter
a Growth rate of LDL-cholesterol

Greek Symbols

υb Kinematic viscosity of blood
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µb Dynamic viscosity of blood
Pr Prandtl number for blood
g Acceleration due to gravity
δ∗ Dimensional height of stenosis
σe Electrical conductivity
λ∗ Length of stenosis
ω Oscillatory frequency
θ Dimensionless blood temperature
φ Dimensionless cholesterol particle concentration
θa Dimensionless wall temperature
θ0 Perturbed blood temperature profile
φa Dimensionless wall lipid concentration
φ0 Perturbed lipid concentration
ρb Blood density

Subscripts

w Wall
b Blood
e Electrical
T Thermal
∞ Far field
MMDARG Mathematical Modelling and Data Analytics Research Group

Appendix
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