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Abstract
Mixture distribution refers to the combination of more than one probability distribution. Meanwhile, non-normality of data set
may be inevitable and the cause may be as a result of mixed distributions thereby renders parametric tests ineffective. Montecarlo
experiment was performed 5000 times under twelve sample sizes where data were generated from Gaussian and Cauchy distribu-
tions using R-statistical packages. At three commonly used alpha levels (0.1, 0.05 and 0.01), the robustness of the test statistics
(Rank transformation t-test, Wilcoxon sign test (Distribution and Asymptotic), Signed rank test (Distribution and Asymptotic) and
Trimmed t-test) were examined. When the type I error rate of a statistic approximately equal to the true error rate then the statistic
is considered robust. At 0.1 and 0.05, Rank transformation t-test, Wilcoxon sign test (distribution) and Trimmed t-test in this order
are robust. Meanwhile, at 0.01 Rank transformation and Wilcoxon sign test (distribution) were identified to be robust. Also, further
counts at all levels of significance revealed that the Rank transformation test is robust and thereby recommended when data comes
from a mixed distribution. Hence, this study has been able to identify test statistics that are robust when data comes from a mixed
distribution in one sample problem.
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1. Introduction

A probability distribution that is derived from the combination of two or more random variables at different dis-
tributions is called mixture distribution. In other words, a mixture distribution occurs when more than one probability
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distributions are combined to form a single distribution. Data when analyzed often fail the assumption of normality
which could be as a result of unequal variances in the error terms or presence of extreme observations in the data
set, and thus the need for equivalent non parametric tests. When data does not come from a known distribution, then
the random variables are not identical, such data usually come from a mixed distribution. It also exists as finite or
countable mixtures and it at times exists as uncountable mixtures.

There are several literature on mixture distribution in diverse areas of specialization. Such include the social
and behavioral sciences, environmental sciences, engineering and physical sciences etc [1, 2-4]. In biological and
physical sciences most especially, [5] illustrated that mixture of distributions do occur such that if random sample of
fish species is taken, therefore the characteristics measured for each member of the sample will definitely vary with
age but, the distribution of the characteristics in all population will be a mixture of the distributions at different ages.
[6] considered mixture models when the mixing distribution can be quietly identified using Schwarz’s criteria and
Neyman test. In his analysis, he presented smooth goodness of fits for testing the mixture distribution of a sequence
of independently identically distributed random variables.

In case of [7], using the likelihood ratio (LR) test for unconditional geometric distributions examined the mixture
hypothesis of conditional geometric distributions. Through simulation studies, the interrelationship between geomet-
ric and exponential mixture hypothesis was examined. Meanwhile, [8] claimed that under a Dirichlet process prior
unobserved random effects contribute to unequal variance of the error terms among sampling units and therefore,
smooth nonparametric estimate of mixture distribution can be derived as an approximate nonparametric Bayes esti-
mate. Also, in [9] with the aids of Monte Carlo experiment, the relative power of paired parametric and nonparametric
tests were assessed. The outcome of their results revealed that, in given situation each statistic was more powerful.
Following the proposed distribution of [10] through simulation studies studied the effect of the Gaussian distribu-
tion assumptions on the size of one sample nonparametric test (Sign test) and its power where one sample ttest and
Wilcoxon’s signed rank test were employed in one sample location problem. Under various Kurtosis and Skewness
criterions, the power functions of the test statistics considered were generated for several sample sizes. One of their
results shows that all tests are more powerful for lighter tails rather heavier tails, with the effect strongest for the sign
test, followed by Wilcoxon test and then t-test.

According to [11], for the one and two samples problem at different degrees of correlations, sample sizes, popu-
lation distributions including true difference in location by analysis investigated the behavior of the student t-test and
the Wilcoxon test using Monte-Carlo simulations. Their results revealed that the two sample tests performed below
expectation in terms of type I error rates performance. Sequel to the outcome of their results, they affirmed that the
sign of the underlying correlation cannot be used as a basis to conclude that which of the test is to be used between
the t - test or the Wilcoxon test for one sample tests. Presence of extreme observation in the data set may be inevitable
even in paired observations, this made [12] to examine the performance of some paired inferential statistics in the
presence of outliers where Paired t-test, Wilcoxon sign rank test, Rank transformation t - test and Trimmed t-test
were considered as inferential statistics. Through simulation studies, data were obtained from Gaussian distribution
and polluted with degrees of outliers and multicollinearities. Under different levels of multicollinearities and alpha
levels, they concluded that Rank transformation test, Distribution Sign test and Trimmed t-test statistics respectively
can accommodate outliers.

In the literature, authors have examined the robustness of some inferential statistics in the presence of outliers
in one and paired samples problem at different levels of multicollinearity and significance levels when data are only
generated from normal distribution whereas other distributions were not put into consideration. Hence, to bridge this
gap, this study examines the robustness of some one-sample inferential test statistics when data comes from mixture
distribution. The distribution considered in the study where data was generated are normal and Cauchy distributions.
Without any loss of generality, this study in the long run was able to identify some non-parametric and semi-parametric
inferential test statistics that are robust when data comes mixture distribution at different sample sizes and levels of
significance. The distributions and the simulation procedures are discussed as follows.

2. Materials and methods

2.1. Distribution used for the Study
In this study, data was generated from two distributions. These include the normal distribution and the Cauchy

distribution. Both are briefly illustrated below
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2.1.1. Normal distribution:
One of the most commonly used distributions is the Gaussian distribution otherwise known as the normal distribu-

tion; this is because of its ability to approximate several natural phenomena. It serves as reference for many probability
distributions. It is a distribution that explains how the values of a variable are distributed. In normal distribution, most
of the observations are cluster around the mean.

2.1.2. Properties of the Normal distribution
1. It is symmetric about the mean and has bell shaped

2. Its random variable ranges from -∞ to∞

3. It has two parameters, µ and σ.

The normal density function is

f
(
x : µ, σ2

)
=

1
√

2πσ2
e−(x−µ)2/2σ2

(1)

This study employed an hypothesized mean (µ = 10) and variance (σ2 = 25).

2.1.3. Cauchy distribution
A continuous probability distribution that has the ratio of two independently normally distributed random variables

with the mean at the denominator of the distribution zero is called Cauchy distribution. It is otherwise known as the
Lorentz distribution. It is a distribution that its mean and variance are undefined hence, it is called a “pathological”
distribution. Its peak are tall other than normal distribution whereas its fat tails slowly decayed gradually.

The probability density function of Cauchy distribution is defined as follows;

pd f =
1

πγ
[
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(
x− x0
γ

)2
] (2)

where γ is the scale parameter.
The special case of the student t distribution is the standard Cauchy distribution with the degrees of freedom

n − 1 = 1.
i.e. t (df = 1):
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2.1.3.1 Properties of Cauchy distribution:
Since the pdf of Cauchy distribution is an even function about x = a (i.e the median) therefore pdf is symmetric

about the line x = a.

1. The pdf has undefined mean.

2. The pdf has undefined variance

2.2. Review of some inferential Statistics

2.2.1. Trimmed t-test (One sample)
In order to combat the effect of extreme values in the data set, [13] came up with another inferential statistics in

this regard called trimmed t –test. In trimmed mean, the average is adjusted by reducing the entire data by certain
percentage at the upper and lower tail of the data. After reducing the specified extreme values, it is then found using
a standard arithmetic averaging formula. Also, he proposed another test statistic for the two samples problem, when
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the population variances are not equal that excludes extreme observations [14]. In this case, q – observations were
removed from each tail of the distribution. Equation 5 defined the statistic.

Xt =
Xq+1 + Xg+2 + · · · + Xn−q

n − 2q
(4)

Such that x1,...,xn are the ordered observations in the data, q are the values that have been reduced at the beginning
of the sample data. Likewise, the denominator of equation (4) indicates the number of data deleted from the sampled
data.

Given the Winsorized mean, its sum-of-squared derivation can be computed as:

SSDw=
[
q + 1

] [
xq+1−Xw

]2
+
[
xq+2−Xw

]2
+. . .+

[
q + 1

] [
xn−q−Xw

]2
(5)

And its variance can be expressed as:

S 2
w =

S S Dw

n − 2q − 1
(6)

The one sample test for trimmed test can be defined as:

tw =
Xt − µt

S w
/√

n − 2q − 1
(7)

wheretwis the test statistic for the trimmed test and it follows a t-distribution and Xtis the mean of the remaining
observation after q-observation has been removed.

2.2.2. The sign test
Sign test is a one sample nonparametric test discovered by [15] in early 17th century. Its main advantage is to test

whether or not two groups are equally sized especially when data comes from unknown population and when sampled
data are ordered in pairs. The numerical magnitudes of the observations are not based but rather on the signs attached
to the values, which is either plus (+) or minus (-). With probability value 0.5, it is otherwise known as binomial sign
test. In addition, it is used to test the pair value below or above the median and the pair difference is not measured
hence, it is considered a weak test. The test is rejected if

P (W ≤ W+) < α or P (W ≤ W−) < ∝, when the test is two-tail, ∝/2 is used instead of α.
Asymptotically, the test has the distribution of binomial (n, 0.5) as in: n C x q n−x p x with px = 0.5. Its asymptotic

test statistic is:

Z =
W+ − n

2√ n
4

∼ N (0, 1) (8)

2.2.3. Rank Transformation
In order to circumvent the bridge between parametric and nonparametric tests [16] proposed Rank transformation

test. Here, instead of the data itself, the usual parametric procedures are applied to the ranks of the data. It was seen
as an alternative method just as in nonparametric methods to solve problems if such data does not follow a normal
distribution.

One sample T-test for Rank Transformation
According to [16], the test statistic was defined as follows:
Let D1, D2,. . . ,Dn indicate independent random variables with a common mean.
Meanwhile, for matched pairs (Xi, Yi);Di = Xi, - Yi. The statistic is given as:

T =

∑n
i=1 Ri√∑n
i=1 RI

2
(9)

Where Ri = (sign Di) x (rank of / Di/)
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An equivalent formula to (9) is (10)

tR =

∑n
i=1 Ri√

n
∑n

i=1 RI
2
−(∑n

i=1 Ri)2

n−1

(10)

Equation (10) has the t-distribution with (n-1) degree freedom.
However, (10) can further be expressed as:

tR =
T√

n
n−1 −

T 2

n−1

(11)

Which is defined to be a monotonic function of T.

2.3. Algorithm for simulation

How data were generated from different distributions and subjected to the inferential test statistics including the
estimation of Type I error rates using Monte Carlo procedures with the aid of R-programming codes are hereby
discussed.

2.3.1. Source of Data
The data used in this study were generated with the aid of R-statistical programming package using the following

parameters

1. (n) = 10, 20, 30, 40, 60, 80, 100,200, 300, 400, 500 and 600 as sample sizes

2. Hypothesized median (md) and mean = 10

3. Standard deviation (δ) = 5

4. Replications (RR) = 5000

5. Presented α-level = 0.1, 0.05 and 0.01

2.3.2. Distributions used with the parameters.
The data were generated from the following distributions

1. Normal distribution with (µ) = 10 and (δ) = 5

2. Cauchy distribution (n, 10)

2.3.3. The Test Statistics used.
The test statistics used in the one sample problem are as follows:

1. One sample t-test for Rank transformation by [16]

2. Wilcoxon sign Test (Distribution (WSTD) and Asymptotic (WSTA)) by [17]

3. Wilcoxon signed Rank test (Distribution (WSTD) and Asymptotic (WSTA)) by [17]

4. Trimmed t-test (Tt-test) by [13]
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2.3.4. Procedures for Data Generation and Estimation of Type I error Rate.
The procedures for data generation and calculation of Type I error rate in one sample mixture distribution are as

follows:

1. Choose a sample size(n)

2. Generate random sample size from the distributions under consideration, for example X∼N(n, 10, 5) and
Cauchy∼(n, 10).

3. Combine the data generated in step (ii).

4. Subject each considered statistic and save their p-values

5. Assign step(IV) as follows;

Hi =

{
1, i f p − value < ∝
0, otherwise

where α = 0.1, 0.05 and 0.01 are the level of significance

1. From step (II) to (V) repeat up to 5000 times, RR=5000

2. At each statistics, add the results obtained in (VI) as in the equation below;

H =

RR∑
i=1

Hi

3. To estimate the type I error of the statistics, divide the result in (VII) by the (RR) as given as follows:

i.e.K∝ =
∑RR

i=1 Hi

RR = H
RR

ix. Select (n) and follow the procedures from (II) - (VIII) until all (n) are completely used.

2.3.5. Examination of the test statistics
Robustness of the inferential statistics were investigated in mixture distribution. Any calculated Type 1 error

rates of the test that falls within the range of 0.095 – 0.14, 0.045 – 0.054 and 0.005 – 0.014 for 0.1, 0.05 and 0.01
respectively at different alpha level (α)and sample sizes (n) which was adopted by [18], used by [3] and [1]. Also, a
test statistic that has the highest number of counts is considered robust.

3. Results and Discussion

Here, the results of simulation for all the inferential statistics in mixture distribution of one sample problem
including graphical representation are discussed.

3.1. Type I Error rate of One Sample Test Statistics in Mixture Distribution when α = 0.1:
Table 1 and 2 display the simulation results of the test statistics at 0.1 level of significance and graphically repre-

sented in figure 1a and 1b. RK-ttest, WSTD, Tt-Test, WSTA, WSRTD have better Type I error rate as the sample size
increases while WSRTA are not good. Meanwhile when counted over the sample sizes, it was observed that RK-ttest
is robust, followed by WSTD and Tt-test in that order.

3.2. Type I Error rate of One Sample Test Statistics in Mixture Distribution when α = 0.05:
Results of Monte Carlo experiments for each inferential statistics is presented table 3, 4 and graphically repre-

sented in figure 3, 4. The results and graphical representation indicate that the Type I error rate of RK-ttest, WSTD,
Tt-Test, WSTA and WSRTD are good as the sample size increases while, WSRTA is not good. At the same time when
counted over the sample sizes, it was observed that TK-ttest, WSTD and Tt-test in that order performed better while
WSRTD, WSTA and WSRTA do not.
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Table 1. Simulation Results at 0.1 Level of Significance
n RK-ttest WSTD WSTA WSRTD WSRTA Tt-test
10 0.1124 0.0904 0.0246 0.0246 0.6148 0.0582
20 0.0954 0.0954 0.038 0.038 0.8688 0.0746
30 0.097 0.0928 0.0928 0.0928 0.9526 0.0772
40 0.0958 0.094 0.0846 0.0846 0.9808 0.0882
60 0.0942 0.0942 0.0942 0.0948 0.998 0.0862
80 0.0996 0.0996 0.0942 0.0942 0.9996 0.097

100 0.103 0.103 0.0894 0.0894 1 0.0982
200 0.0976 0.0976 0.0726 0.0728 1 0.0944
300 0.1014 0.1016 0.1024 0.1022 1 0.1008
400 0.1084 0.1084 0.1002 0.1002 1 0.1052
500 0.1068 0.1068 0.1048 0.1048 1 0.1014
600 0.0972 0.0972 0.0944 0.0946 1 0.101

Source: Simulation Results

Figure 1. Graphical Representation of Type I Error rate of One Sample Test Statistics in Mixture Distribution when α = 0.1

Table 2. Times Type I error rate approximates to α = 0.1.
Alpha
Level

Test
statistics

10 20 30 40 60 80 100 200 300 400 500 600 SUM RANK

RK-
ttest

1 1 1 1 0 1 1 1 1 1 1 1 11 1

WSTD 0 1 0 0 0 1 1 1 1 1 1 1 8 2
α = 0.1 WSTA 0 0 0 0 0 0 0 0 1 1 1 0 3 5

WSRTD 0 0 0 0 1 0 0 0 1 1 1 0 4 4
WSRTA 0 0 0 0 0 0 0 0 0 0 0 0 0 6
Tt-test 0 0 0 0 0 1 1 0 1 1 1 1 6 3

Source: Counted from Table 1

3.3. Type I Error rate of One Sample Test Statistics in Mixture Distribution when α = 0.01
Results of Monte Carlo experiments for each inferential statistics is presented table 5, 6 and graphically rep-

resented in figure 5, 6. From the results and graphical representation it can observed that the Type I error rate of
RK-ttest, WSTD, Tt-Test, WSTA, WSRTD and are good as the sample size increases whereas, WSRTA weak. When
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Figure 2. Bar chart indicating total times Type I error rates approximates to α = 0.1

Table 3. Simulation Results at 0.05 Level of Significance
n RK-ttest WSTD WSTA WSRTD WSRTA Tt-test
10 0.0516 0.0516 0.0246 0.0246 0.6148 0.0198
20 0.0506 0.0464 0.038 0.038 0.7476 0.0318
30 0.048 0.048 0.0386 0.0386 0.8988 0.0346
40 0.0538 0.0528 0.0386 0.0386 0.9584 0.0432
60 0.046 0.045 0.045 0.0228 0.9954 0.0392
80 0.0498 0.0488 0.034 0.034 0.9986 0.0456
100 0.0512 0.0508 0.0312 0.0312 0.9998 0.0434
200 0.0534 0.0532 0.0416 0.0418 1 0.0494
300 0.0508 0.0506 0.0468 0.0466 1 0.0508
400 0.0516 0.0514 0.0408 0.0408 1 0.0484
500 0.0582 0.058 0.0484 0.0484 1 0.0542
600 0.0484 0.0484 0.0474 0.0474 1 0.0472

Source: Simulation Results

Figure 3. Graphical Representation of Type I Error rate of One Sample Test Statistics in Mixture Distribution when α = 0.05
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Table 4. Times Type I error rate approximates to α = 0.05
Alpha
Level

Test
statistics

10 20 30 40 60 80 100 200 300 400 500 600 SUM RANK

RK-ttest 1 1 1 1 1 1 1 1 1 1 1 1 12 1.5
WSTD 1 1 1 1 1 1 1 1 1 1 1 1 12 1.5

α = 0.05 WSTA 0 0 0 0 1 0 0 0 1 0 1 1 4 4
WSRTD 0 0 0 0 0 0 0 0 1 0 1 1 3 5
WSRTA 0 0 0 0 0 0 0 0 0 0 0 0 0 6
Tt-test 0 0 0 0 0 1 0 1 1 1 1 1 6 3

Source: Counted from Table 3

Figure 4. Bar chart indicating total times Type I error rates approximates to α = 0.05

Table 5. Simulation Result at 0.01 Level of Significance
n RK-ttest WSTD WSTA WSRTD WSRTA Tt-test
10 0.0164 0.011 0.0018 0.0018 0.3818 0.0024
20 0.0118 0.0096 0.0024 0.0024 0.5912 0.0036
30 0.0096 0.0092 0.005 0.005 0.8204 0.0046
40 0.0108 0.0094 0.0052 0.0052 0.9214 0.0056
60 0.0082 0.0076 0.0076 0.0052 0.9748 0.0046
80 0.0118 0.0108 0.0088 0.0088 0.9956 0.0092
100 0.0104 0.0098 0.0078 0.0078 0.9992 0.0088
200 0.0094 0.0094 0.009 0.009 1 0.011
300 0.0108 0.0106 0.0114 0.0114 1 0.0104
400 0.011 0.011 0.009 0.009 1 0.0088
500 0.0102 0.0096 0.0092 0.0092 1 0.0102
600 0.0088 0.0084 0.0078 0.0078 1 0.0078

Source: Simulation Results

counted over the sample sizes, it was observed that the statistics did well which includes; TK-ttest, WSTD, WSRTD,
WSTA and Tt-test.

3.4. Result of Type I Error Rates for one sample when counted over all levels of significance.

The results in Table 7 and Figure 7 show that the RK-ttest and WSTD are robust in mixture distribution as they
have highest count across all levels of significance.
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Figure 5. Graphical Representation of Type I Error rate of One Sample Test Statistics in Mixture Distribution when α = 0.01

Table 6. Times Type I error rate approximates to = 0.01
Alpha
Level

Test
statistics

10 20 30 40 60 80 100 200 300 400 500 600 SUM RANK

RK-ttest 2 3 3 3 2 3 3 3 3 3 3 3 34 1
WSTD 2 3 2 2 2 3 3 3 3 3 3 3 32 2

α = 0.01 WSTA 0 0 1 1 2 1 1 1 3 2 3 2 17 4.5
WSRTD 0 0 1 1 2 1 1 1 3 2 3 2 17 4.5
WSRTA 0 0 0 0 0 0 0 0 0 0 0 0 0 6
Tt-test 0 0 0 1 0 3 2 2 3 3 3 3 20 3

Source: Counted from Table 5

Figure 6. Bar chart indicating total times Type I error rates approximates to α = 0.01

4. Discussion

Following the investigation of simulation results of one sample inferential statistics at different levels of signifi-
cance in which they have been presented in Table 1, 3 and 5 and as well represented graphically in Figure 1, 3 and 5
as the sample size increases. Likewise, the number of times the Type I error rates of the test statistics falls within the
preferred interval is counted over the sample sizes. Hence, table 8 hereby summarizes the investigation for robustness
of one sample inferential statistics in mixture distribution in order of importance.
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Table 7. Total number Times Type I error rate approximates to true error rates when counted across the sample sizes
Test
statistics

10 20 30 40 60 80 100 200 300 400 500 600 SUM RANK

RK-ttest 2 3 3 3 2 3 3 3 3 3 3 3 34 1
WSTD 2 3 2 2 2 3 3 3 3 3 3 3 32 2
WSTA 0 0 1 1 2 1 1 1 3 2 3 2 17 4.5
WSRTD 0 0 1 1 2 1 1 1 3 2 3 2 17 4.5
WSRTA 0 0 0 0 0 0 0 0 0 0 0 0 0 6
Tt-test 0 0 0 1 0 3 2 2 3 3 3 3 20 3

Source: Counted from Table 2, 4 and 6

Figure 7. Bar chart indicating overall total times Type I error rates approximates to the true error rates across all sample sizes

Table 8. Overall Summary of Robustness of One sample inferential Statistics in Mixture Distribution
Alpha level One Sample Investigation

Robustness
0.1 Rk-ttest, WSTD and Tt-test
0.05 Rk-ttest, WSTD and Tt-test
0.01 Rk-ttest, WSTD, Tt-test and WSTA
Overall Rk-ttest, WSTD and Tt-test

5. Conclusion

When α = 0.1 RK-ttest, WSTD and Tt-test in that order are more robust in a mixture distribution and α = 0.05
RK-ttest, WSTD and Tt-test in that order are more robust in a mixture distribution. Meanwhile, at 0.01 level of
significance, RK-ttest and WSTD in this order are more robust in a mixture distribution.

In summary, further counts at all alpha levels as indicated in Table 7 and Figure 7 revealed that the Rank transfor-
mation test is robust and should be used when data set come from mixture distribution.

Consequently, this study has been able to identify some non-parametric and semi-parametric inferential test statis-
tics that are robust when data comes mixture distribution at different sample sizes and levels of significance. Data
access is a restriction for this study, as there are currently no real-life data that follows the combination of Gaussian
and Cauchy distributions. Also, for future research, the work can be extended to matched-pairs, two samples and
more than two sample problems.
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