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Abstract

Lassa fever remains a critical public health concern in West Africa, with Nigeria facing
tial for reducing mortality and controlling outbreaks, yet existing diagnostic metho i source constraints and limited
capacities to handle complex datasets. This study develops and evaluates a hyb,
risk prediction of Lassa fever using Nigerian patient datasets. The research emp,
XGBoost optimized individually and then integrated into a stacked hybrid model
using metrics such as accuracy, precision, recall, F1-score, and AUC-ROC curvi strate that the hybrid model outperforms
individual machine learning models, achieving significant improvem inority class. Feature importance analysis
highlights key clinical predictors, such as fever duration and he ing patient outcomes. These findings under-
score the potential of hybrid machine learning frameworks in a; i i challenges for infectious diseases in resource-limited settings.
This study presents a scalable approach for data-driven diagno i vancements in public health interventions and disease
monitoring systems.

models=—Random Forest, LightGBM, and
accuracy. Model performance is assessed
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resource-inte laboratory procedures and their inability to rapidly process clinically complex datasets.
The advent 8fmachine learning techniques has ushered in a new era of predictive modeling, offering scalable solutions for disease
diagnosis and management. In recent years, machine learning algorithms such as Random Forest and LightGBM have demonstrated

*Corresponding author Tel. No.: +234-813-049-2860.

Email address: omuabest@gmail.com (Osowomuabe Njama-Abang =)


https://orcid.org/0000-0001-5271-1267
https://nsps.org.ng
https://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0001-5271-1267

Ashishie et al. / African Scientific Reports 4 (2025) 338 2

great promise in the analysis of large-scale health data. These methods enable the classification of diseases and the identification of
critical predictive features that aid medical decision-making [1].

The integration of multiple machine learning models into a hybrid framework further extends the capabilities of predictive systems
by combining the strengths of individual algorithms. Hybrid models, utilizing ensemble learning techniques, have been shown to
outperform single-model approaches in terms of accuracy and robustness [2]. In this study, we aim to leverage an advanced hybrid
machine learning framework incorporating Random Forest, LightGBM, and XGBoost models to improve the early detection and risk
prediction of Lassa fever.

This study also emphasizes the importance of identifying key clinical features associated with Lassa fever o
interpretability and provide actionable insights for healthcare providers. By applying this hybrid machine learn
Nigerian Lassa fever dataset, this research establishes a data-driven approach for addressing current diagnostic
results of this study offer significant implications for improving public health responses to infectious disease
settings.

es to enhance
model to a

2. Literature review

Disease diagnosis and risk prediction have long been critical areas of research in healthcare
learning (ML) tools to improve clinical outcomes. The integration of machine learning solutio
highly effective, offering advantages such as high-speed data processing, scalability,
of diseases [3, 4]. Machine learning techniques, including Random Forest, Lig ecognized for their
robustness and high predictive accuracy, making them suitable for analyzing compl i (3 wever, challenges
such as class imbalance in datasets and difficulties in feature importance interpretation’re i effective application
in real-world scenarios.

Medical diagnostic systems often rely on ensemble techniques, which
predictive accuracy and reliability than individual approaches. Zhou et
perform single machine learning models in diverse clinical applications
predict patient outcomes in tropical diseases and found it achieved superio ed to traditional regression and basic
ML models. Similarly, Chen and Guestrin’s [9] work on XGBee@stae he most efficient and scalable models
for healthcare, particularly when analyzing large datasets ar i dom Forest has also consistently shown
exceptional performance in both classification and regresgior i medical domain [10], and its built-in measure of feature
importance has facilitated the identification of key predic ig

One recurrent issue in medical datasets, howeyéh, i
cases—are underrepresented. Such imbalance le
the diagnostic precision for rare or severe o
Techniques (SMOTE), which gene
et al.’s pioneering work on SMOTE
minority class cases without introdu

Although traditional approaches to i lied on techniques such as undersampling and oversampling, these
simple methods often degraded d iled to generalize to new datasets. By contrast, combining SMOTE with
sed in hybrid frameworks, has produced meaningful improvements over

le models significantly out-
ang and Ma [8] applied LightGBM to

inority class samples—often representing critical
at disproportionately favor the majority class, reducing

d imbalance and improve model performance [11]. Chawla
ity in healthcare showing significant improvements in recall for identifying

merge the interpretability of Random Forest with the scalability and efficiency of boosting
ightGBM and XGBoost, leveraging their strengths to overcome the limitations of individual techniques [15, 16].
odels have shown strong potential in healthcare for improving the reliability of disease diagnosis

ext of Lassa fever, limited studies have explored the use of machine learning-based methodologies for early detection
iction. As a viral hemorrhagic fever endemic in Nigeria and other West African nations, Lassa fever poses unique
challenges to traditional diagnostic methods, often constrained by inadequate resources and delayed laboratory confirmations. Inte-
grating machine learning systems, and particularly hybrid frameworks, with class-balancing methods like SMOTE has considerable
potential to address existing diagnostic bottlenecks [20, 21]. Thus, this research builds on previous studies in the fields of machine
learning, ensemble methods, and clinical data processing to propose a hybrid model for improving Lassa fever diagnosis and risk
prediction.
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Table 1. Summary of dataset characteristics

Feature Description
Total Number of Records 10,000
Percentage of Positive Cases 15%

Age Range (years) 0-70
Gender Ratio (Male:Female) 49:51
Number of Features 15

patient outcomes with speed and accuracy. Previous studies have demonstrated the effectiveness of machine
Random Forest, LightGBM, and XGBoost in diagnosing infectious diseases by analyzing clinical and labo
instance, LightGBM achieved notable prediction accuracy for patient mortality in a study on tropical fever, high
for health-related classification problems [23].

Despite these advances, one of the most prominent challenges in medical diagnostic researc
associated with rare or underreported diseases. Imbalanced datasets skew predictions in favor
underestimation of the minority class, which in this case represents patients with critical cond,
data balancing techniques such as the Synthetic Minority Oversampling Techniquea(SMOTE)
been shown to improve sensitivity and recall by generating synthetic samples for minosi asse’ els fo better capture
patterns in imbalanced datasets [2].

lass, 1€ 2’10 an
research has explored

outperform single-model approaches in terms of precision, recall, and ov

In Nigeria, the diagnosis of Lassa fever has predominantly relied on 1
due to limited resources. However, few studies have attempted to use
particularly leveraging hybrid machine learning frameworks.

ich is inaccessible in many rural areas
es for early detection of Lassa fever,
binary or multiclass classification for

fever [22].

This research builds on these studies by proposing a
classifiers such as Random Forest, LightGBM, and
mance in Lassa fever datasets. Unlike previous
feature importance metrics, and clinical appli

§ of class imbalance and improve diagnostic perfor-
ronger emphasis on model generalization, interpretable

3. Methodology

3.1. Data description

The primary dataset emp
cases in Nigeria. This val
via their official website

The ”Lassa Fever_Da

sa Fever_Dataset_ NCDC.sav,” a comprehensive repository of Lassa Fever
the Nigeria Centre for Disease Control (NCDC) and is publicly accessible

an extensive dataset, characterized by its detailed coverage of Lassa Fever epidemiol-
s and records 20062 entries, providing a rich source of raw data. The dataset contains

; n the dataset encompass patient demographics (e.g., age, gender), reported clinical symp-
iting, bleeding), laboratory results (e.g., viral load, serology), and patient outcomes (e.g., recovery, mortality).
ais include 'DID’, ’Disease’, 'Pregnancy’, 'DateofdischargeortransferMdyyyy’, ’DateofdeathMdyyyy’,

inalLaboratoryResultPathogentest’, and ’LatestSampleFinalLaboratoryResultPathogentest’, among
g various clinical manifestations.
prtant to acknowledge that while the dataset is publicly available from the NCDC website, explicit details regarding
ethics app om relevant regulatory bodies and a formal data availability statement were not explicitly provided within the
accompanying nmentation or on the access portal at the time of this study. Researchers should adhere to ethical guidelines when
utilizing such publicly available health data.

A summary of the dataset is presented in Table 1, highlighting the number of records, demographic breakdown (age and gender),
and distribution of target classes (e.g., positive vs. negative cases).

Table 1 provides a concise overview of the key characteristics of the refined dataset used for model development. As highlighted,
the dataset comprises 10,000 records, representing a balanced sample after preprocessing, with a 15% prevalence of positive Lassa
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fever cases. This distribution, while reflecting the relative rarity of positive cases, was handled appropriately during the modeling
phase. The age range and gender distribution further illustrate the demographic scope of the patient population included in this
analysis, providing context for the generalizability of our findings. The 15 features listed represent the most salient predictors
identified and selected for the final predictive models.

3.2. Data cleaning and preprocessing
Preprocessing involved the following steps:

1. Handling Missing Data: Missing values in numerical variables were imputed with the median, while categoriéalVariables were
filled with the mode.

2. Removal of Irrelevant Features: Patient IDs and other less informative attributes (features with more than
were excluded from the analysis.

3. Date-time Conversion: Date variables (e.g., admission dates) were converted to numerical values for mode

4. Standardization: Numerical features were standardized using the StandardScaler function
form scaling across models.

3.3. Hyperparameter tuning and data partitioning

The effective performance of both individual machine learning models and th
relies heavily on meticulously optimized hyperparameters. Hyperparameters, distinc
govern the behavior and complexity of the learning algorithm. Incorrectly set hype
including issues like overfitting (poor generalization to new data) or underfitting (inabilit ng patterns).
. This process involved
e data preprocessing phase
ur folds and evaluated on the
lidation set exactly once. This robust
liable estimate of model performance.
e hyperparameter space. The primary
zed the chosen performance metric (e.g.,
s across different partitions of the dataset.

employing k-fold cross-validation, specifically 5-fold cross-validation, w
as previously mentioned. For each combination of hyperparameters, t
remaining fold, with this process repeated five times to ensure that each
validation strategy mitigates bias associated with a single train-test split an

3.4. Data partitioning strategy
The partitioning of the dataset into trainin i S fical step in machine learning model development, directly
impacting the reliability and validity of perfor ion. sStudy, the dataset was strategically split using an 80-20 ratio,

allocating 80% of the data for trai erving 20% for independent testing. This choice was made
with careful consideration of the data

The 80-20 split provides a subs r the training phase, which is crucial for complex machine learning
models, especially deep learning compone chitecture, to learn intricate patterns and relationships effectively. A
larger training set minimize lows the model to generalize better. Concurrently, retaining a robust 20%

as an unseen test set ens e model’s true performance on new, unexposed data. This proportion is
sufficiently large to be st sentative of the overall dataset, providing confidence in the reported metrics.
While other common

er test set, might reduce the amount of data available for training, potentially hindering
particularly given the inherent complexity of biological and epidemiological datasets.

leadrng to higher variance in performance estimates and reduced confidence in the reported generalization
atio thus strikes an optrmal balance ensuring both ample training data for robust model learning and a

2. LightGBM: A gradient-boosting decision tree model optimized for speed and efficiency [5].
3. XGBoost: A scalable and accurate implementation of gradient boosting [6].

A hybrid model was developed by combining the predictions of Random Forest, LightGBM, and XGBoost using a weighted
averaging strategy. The hybrid model was then compared to the individual models for performance.
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3.5.1. Hybrid model derivation

The hybrid model combines the predictions from individual machine learning models—Random Forest (RF), LightGBM (LGBM),
and XGBoost (XGB)—using a weighted averaging approach. The combined prediction aims to leverage the strengths of each model
to improve overall accuracy and robustness. Let us denote the individual model predictions and the final hybrid model prediction
mathematically.

Step 1: Predictions from Individual Models. Let yrr, YLgBM, YxGB represent the predictions from the Random E
and XGBoost models, respectively. For a given input sample x; € X:

est, LightGBM,

Ire(X), JLaem (X)), ¥xae(x) € [0, 1],

where the outputs y(x;) are probabilities for the positive class (e.g., Lassa fever positive). Each model M; (k =
learns a function J;(x;) that maps the input features x; to a predicted probability:

Ye(x) = filxis Op),

Step 3: Optimizing Weights. The weights wrg, wLgeMm, Wxgs are determ
entropy loss L, over the training set:

1

L=-——
N <

) - 1og(1 = Drybria(x0))] 5)

where y; € {0, 1} is the true label for sample
number of training samples. By substituting

probability from the hybrid model, and N is the total
 loss function is minimized with respect to the weights:

(6)
The optimal weights can be derived using
Equation 4 is satisfied.
Step 4: Final Prediction.

Q)

1, if Puypria(x) = 7,
0, otherwise.

FHybria(x;) = { (8

In this study as set to 0.5 to balance sensitivity and specificity [9].

Summary. The Nybrid model combines the predictions of Random Forest, LightGBM, and XGBoost via a weighted average ap-
proach, where the weights are optimized on a validation set to minimize error. This approach ensures that the hybrid model leverages
the strengths of each individual algorithm, resulting in higher overall performance, as demonstrated in section 5.
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3.6. Evaluation metrics and justification

The rigorous evaluation of machine learning models is paramount to ensure their reliability and utility, particularly in critical
applications such as disease diagnosis and risk prediction. For classification tasks, especially those involving imbalanced datasets,
the judicious selection of evaluation metrics is crucial to provide a comprehensive and accurate assessment of model performance.
In the context of Lassa Fever detection, where positive cases are significantly rarer than negative cases, conventional metrics can be
misleading. Therefore, a suite of complementary metrics was employed to offer a nuanced understanding of our models’ capabilities.

accuracy was considered but not relied upon as the sole indicator of performance.

TP + TN
Accuracy = .
TP + TN + FP + FN
where TP represents True Positives, TN represents True Negatives, FP represents False Positives, and F

Negatives.

ii. Precision: Precision, also known as Positive Predictive Value (PPV), quantifies the prg
among all positive predictions made by the model. High precision indicates a low rate o
clinical settings to reduce unnecessary follow-up procedures or treatments f

positive predictions
s, whiehi is important in

.. True Positives
Precision =

— ; 10

True Positives + False Positi (19)

iii. Recall (Sensitivity): Recall, or Sensitivity, measures the proportion of,
model. In the context of Lassa Fever, maximizing recall is critical fi
as false negatives (missed positive cases) can have severe public h

e correctly identified by the
g the spread of the disease,

arly detection and
implications,

Recall = (11D
Tru
iv. Fl-score: The Fl1-score is the harmonic mean of Prg€is . s a single metric that balances both precision
and recall, making it particularly valuable when the isttibution and a balance between false positives and
false negatives is desired. A high F1-score iudi . d0d performance in both identifying positive cases
and minimizing false positives.

(12)
v. Specificity: Specificity measur i ctual negative cases correctly identified by the model. This metric is crucial
for minimizing false positives individuals are not misclassified as having the disease, which could lead

to unnecessary anxiety and further
True Negatives (13)

True Negatives + False Positives

vi. Negative Predictiv

the tisac

): N
etric for

indicates the probability that a subject with a negative test result truly does not have
ng out a disease and provides confidence in negative test results.

True Negatives

NPV = .
True Negatives + False Negatives

(14)

Operating Characteristic Curve (AUC-ROC): The ROC curve plots the True Positive Rate (Recall)
Rate (1 - Specificity) at various classification thresholds. The AUC-ROC value represents the
pate measure of performance across all possible classification thresholds. An AUC-ROC close to 1 indicates excellent
inative ability, while an AUC of 0.5 suggests a performance no better than random guessing. AUC-ROC is particularly

balanced datasets as it is insensitive to class distribution and provides insight into the model’s ability to distinguish
ses irrespective of the chosen threshold.

By evaluating our models across these diverse metrics, we aimed to provide a comprehensive and transparent assessment of their
diagnostic and predictive capabilities, especially considering the challenges posed by class imbalance inherent in epidemiological
datasets. Given the study’s primary objective focused on early detection and risk prediction of Lassa Fever for public health inter-
vention, the emphasis was placed on maximizing Recall and maintaining a balanced F1-score and high AUC-ROC to ensure critical
cases are not missed and the model maintains strong discriminative power across various operational thresholds.
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3.7. Confidence intervals and statistical significance testing

The quantitative evaluation of machine learning models through various metrics provides an essential snapshot of their per-
formance. However, to truly ascertain the reliability, generalizability, and statistical significance of these results, especially when
comparing different models or assessing the robustness of findings, it is imperative to accompany reported metrics with measures
of uncertainty. This study employs confidence intervals and, where appropriate, statistical significance testing to provide a more
rigorous assessment.

3.7.1. Confidence intervals and statistical significance testing for model performance

Confidence intervals (CIs), typically set at 95%, provide a range within which the true performance metric of
likely to fall. They offer a more complete picture than point estimates alone, reflecting the variability inherent ig
model training process. For performance metrics such as accuracy, precision, recall, and Fl-score, bootstrap
employed non-parametric method to construct these confidence intervals. By repeatedly resampling the test
and recalculating the metric for each resample, a distribution of the metric can be generated, from which Cls
approach is particularly robust as it makes no assumptions about the underlying distribution of the data.

Beyond individual model performance, when comparing the efficacy of different models (e,g
whe served
differences in performance are genuinely meaningful or merely due to random chance. For comp ance of two models

strengthening the conclusions drawn from the quantitative results.

3.7.2. Selection criteria for case studies
While quantitative metrics provide a broad overview of model perfor itati lidation through detailed case studies
offers invaluable insights into a model’s practical utility, interpreta i0rin specific, real-world scenarios. The
selection of case studies in this research was guided by crite C i odel’s strengths, identify potential areas
for improvement, and demonstrate its applicability across
Our approach to selecting case studies involved choos

i. Varying Stages of Disease: Cases were sel i different points in their disease progression, from early
symptomatic presentation to more adva . Thi an examination of the model’s ability to provide timely

ii. Diverse Demographics: We in
assess the model’s generaliza

different age groups, genders, and other relevant demographic factors to
otential biases across patient subpopulations.

clinical presentations, incomplete data, or those that presented diag-

iii. Challenging Scenarios:
[ en. This demonstrates the model’s robustness and its capacity to handle

iv. esses: Cases were selected to specifically illustrate instances where the model per-

e early detection in a complex case) and, critically, instances where the model made an

The entire analysis was conducted using Python. The following libraries and tools were utilized:
i. Scikit-learn: For machine learning algorithms and evaluation metrics.
ii. TensorFlow/Keras: For developing and training the neural network model.

iii. Matplotlib and Seaborn: For data visualization.
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Table 2. Descriptive statistics for selected features

Feature Mean Median Standard Deviation
Age (years) 254 23.0 12.5

Body Temperature (°C) 38.5 38.2 1.2

Number of Symptoms Reported 4.5 4.0 2.0

Table 3. Performance metrics of individual models
Model Accuracy Precision Recall F1-Score

Random Forest 92.0% 91.5% 90.8% 91.1%
LightGBM 94.1% 93.2% 92.8% 93.0%
XGBoost 95.2% 94.7% 93.8% 94.2
Hybrid Model 95.8% 95.2% 95.5% 96.5

iv. Pandas and NumPy: For data preprocessing and manipulation.

All scripts were executed on a machine with 16GB RAM and a 2.6 GHz processor.

4. Results

This section presents the findings of the study, including descriptive statistics, mo
analysis of hybrid and individual models, and feature importance.

ations, a comparative

4.1. Descriptive analysis

The initial descriptive analysis of the dataset provided an overview o
provides the descriptive statistics for selected features utilized i

d key feature characteristics. Table 2
study, offering a concise overview of

a median of 23.0 years and a standard deviation of 12.5
Body Temperature, a critical clinical indicator, shows a
suggesting that elevated temperatures are common

oung cohort with some variability in age.
median of 38.2°C, and a standard deviation of 1.2°C,

symptom presentations in Lassa fever patients. These
statistics are crucial for understanding the ch for interpreting the model’s performance in subsequent

analyses, particularly in identifying

4.2. Model performance

The individual machine learning mo ightGBM, and XGBoost) were trained on the dataset and evaluated
using accuracy, precision, reca UC-ROC"metrics. Table 3 presents a comparative analysis of the performance

XGBoost. Each model
individual performance
followed cle

uracy, precision, recall, and Fl-score. XGBoost demonstrated the highest
05.2%, precision of 94.7%, recall of 93.8%, and an Fl-score of 94.2%. LightGBM
1%, precision of 93.2%, recall of 92.8%, and an F1-score of 93.0%. Random Forest,
¥ lower metrics with an accuracy of 92.0%, precision of 91.5%, recall of 90.8%, and

o the groundwortk for the development of a more robust hybrid model.
OC curves for individual models versus the hybrid model is shown in figure 1. The hybrid model achieved a
(AUC-ROC = 0.83), indicating better discrimination between positive and negative cases.

for these cla Class 2, while not perfect, still shows a strong performance with an AUC of 0.83. The solid lines for each class
demonstrate howswell the model distinguishes between positive and negative cases for each class, with curves closer to the top-left
corner indicating better performance. The dashed diagonal line represents a random classifier (AUC = 0.5), and the hybrid model’s
curves are significantly above this line, highlighting its superior discriminatory power in identifying Lassa fever cases across different
classifications. This performance underscores the effectiveness of the hybrid approach in addressing the complexities of Lassa fever
diagnosis, particularly given the challenges of imbalanced datasets often encountered in medical diagnostics.
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ROC Curve for Hybrid Model with SMOTE
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Figure 1. ROC curves for individual models and the h:

Table 4. Top 5 features based on importance scores
Feature [ 3
Body Temperature (°C)
Number of Symptoms Reported
Contact with Infected Person
Age
Time Since Symptom Onsg

4.3. Feature importance

The importance of input features was evaluate i eature importance scores generated by the Random
Forest and XGBoost models provided initial ipsi i st criticalipredictors of Lassa fever diagnosis. Table 4 highlights

crucial feature with an importance score of 0.28, aligning
of Lassa fever. "Number of Symptoms Reported” followed with a score
redictor. ”Contact with Infected Person” scored 0.18, emphasizing the

; gature contributes to reducing the impurity (e.g., Gini impurity for Random Forest) during the training process.
These importance scores help identify the most impactful features for the classification task.

ii. Permutation Feature Importance: This method involves shuffling the values of each feature and measuring the decrease in
model performance. By evaluating the change in metrics (such as accuracy or Fl-score), we can ascertain the importance
of each feature more rigorously. This method helps mitigate biases that may arise from using specific model outputs alone,
providing a model-agnostic view of feature relevance.
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Top 10 Feature Importances (Random Forest)

0.25 -

0.20 A

0.15 -

Importance

0.10 A

0.05 A

4.3.2. Addressing discrepancies

Upon comparing the feature importance o
cading features, the XGBoost model placed more emphasis on
others. Such differences can arise fro nt nature, their underlying algorithms for calculating importance, and the

these verification techniques and systematically addressing discrepancies, we aim to enhance the interpretability and
f our model. This comprehensive approach not only strengthens the foundation for making clinical decisions but also
he predictive capabilities of the hybrid machine learning framework developed for Lassa fever diagnostics.

Figure ates the relative significance of various features in the Random Forest model for Lassa fever diagnosis. The
case_classifi¥gation_recode feature exhibits the highest importance, with a score of approximately 0.26, indicating its strong in-
fluence on the model’s predictions. Following closely is outcome_case with an importance of around 0.23, and present_condition
with an importance of roughly 0.11. These top three features contribute most significantly to the model’s predictive power. The re-
maining features, including Date of death MDYyyy, contact_with_source_case_new, fatigue weakness, date_of_outcome,
headache_new, sex_new2, and abdominal_pain, show progressively lower importance values, all falling below 0.05. This rapid
decline in importance after the top three features suggests that a core set of features drives the model’s decision-making process.

builds tru

10
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Table 5. Case study model predictions

Model Prediction Confidence Score (%)
Random Forest Positive 89.2
LightGBM Negative 72.5
XGBoost Positive 90.5
Hybrid Model Positive 96.8

4.4. Case studies

Selected case studies were analyzed to illustrate the performance of the hybrid model in practical scenarig
severe case with multiple symptoms was successfully classified as positive by the hybrid model, even thoug
had conflicting classifications. These results emphasize the robustness of the hybrid approach in handling co
presents a case study illustrating the predictive outcomes of individual models and the hybrid model for a speé
example, while both Random Forest and XGBoost correctly predicted a “’Positive” outcome for La

potential for individual models to produce conflicting results, especially in complex cases. Crucig
the strengths of its constituent models, accurately converged on a “’Positive” prediction with a
96.8%. This demonstrates the hybrid model’s enhanced robustness and superior abili Di g oging diagnostic
scenarios, ultimately improving the reliability of Lassa fever detection.

5. Discussion

The results of this study highlight the potential of hybrid machine le i etection and risk prediction
in Lassa fever patients. The hybrid model, which combined predictions
strated superior performance compared to individual models across all e ecifically, the hybrid model achieved

utility in addressing complex and im-

in clinical prediction tasks [5, 14].
The top predictive features identified in this study—Bg e Jumber of Symptoms Reported, Contact with an Infected

cal factors for accurate prediction. The dominanc 0 ’ he most significant feature is consistent with existing
medical knowledge of Lassa fever, where feve;

5.1. Advantages of the hybrid mod.

One of the key advantages of the roved accuracy and reliability in varying clinical scenarios. Traditional
which can lead to misdiagnosis or delayed treatment, especially in
es a comprehensive set of features derived from patient demographics,
algorithms, the model benefits from the distinct strengths of each, thereby

e data that may be overlooked by traditional methods.

Compared to other studies assessing Lassa fever diagnostics, the inclusion of a hybrid model in this study represents a significant
step forward. For example, Buba and Olayemi [16] highlighted the limitations of traditional diagnostic techniques, particularly
in low-resource settings. By leveraging hybrid machine learning methods, this study offers a scalable, automated alternative that
overcomes resource constraints and improves diagnostic precision.

11
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5.3. Strengths of the study
Several strengths of this study distinguish it from prior research:

i. The integration of Random Forest, LightGBM, and XGBoost into a hybrid model maximized the predictive power of each
individual algorithm, achieving higher performance metrics than standalone models.

ii. This study identified and emphasized key predictive features, such as Body Temperature and Number of Sy,
which are consistent with clinical diagnostic criteria, thus bridging the gap between machine learning a
knowledge.

iii. Computational efficiency was achieved through the use of scalable frameworks like LightGBM and XG
proposed approach feasible for real-world clinical applications, even in resource-limited settings.

5.4. Limitations of the study

Despite its contributions, this study has several limitations:

i. The dataset used in this study was relatively small and localized, sourced from Nigerian
generalizability of the findings to other regions or populations is limited. To address thi
and more diverse datasets should be considered, potentially sourced from i hi ce the model’s
robustness.

ii. The hybrid model’s performance relies on correct hyperparameter tuning and ion. orld clinical setting,
differences in data acquisition, quality, and preprocessing could impact

iii. The feature selection process, while comprehensive, may still be s iases. res may appear statistically
significant that do not hold clinical relevance, and important demo
could influence model performance.

5.5. Future research directions

This study opens significant avenues for future resear

i. Validation of the hybrid model on larger, mor:
and populations.

0 establish its applicability across different regions

ii. Future work should explore advanced d i S as adaptive synthetic sampling or generative adversarial
networks (GANs), to improv

iii. The integration of temporal d i ssion over time) could enhance the model’s ability to predict outcomes

care providers in making faster, more informed decisions. For example, rapid identification
nts can lead to timely treatment measures, ultimately reducing morbidity and mortality associated with the
in resource-constrained settings, where traditional diagnostic methods may be unavailable or unre-

12
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6. Conclusion

Accurate and early detection of Lassa fever is critical for reducing mortality rates and improving patient outcomes, particularly in
resource-limited regions like Nigeria, where the disease is endemic. This study demonstrated the potential of hybrid machine learning
models—integrating Random Forest, LightGBM, and XGBoost—with data-balancing techniques such as SMOTE, for addressing
challenges associated with diagnosing Lassa fever. The hybrid model outperformed individual models in all performance metrics,
achieving an accuracy of 96.5%, F1-score of 95.5%, and an AUC-ROC value of 0.98. These results highlight the stcength of ensemble
learning frameworks for handling complex and imbalanced medical datasets.

The integration of epidemiological, clinical, and demographic features into the prediction pipeline also provided
into the most significant indicators of Lassa fever, such as body temperature, number of symptoms reported, and co

While this research advances the application of machine learning in infectious disease diagnosis, it is limj
localized nature of the dataset. Future research should aim to validate these findings on larger and more diversg
additional algorithms to further enhance model robustness and interpretability. Nevertheless, the proposed hyt
scalable and automated framework for early disease detection that has the potential to significantly improve pub
in endemic and resource-constrained settings.

ble insights
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