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Abstract

The phonon dispersion curve of four bcc transition metals - (Fe), (W), (Mo), and (Cr) - along the principal symmetry [1,0,0], [1,1,1], and [1,1,0]
of the Brillouin Zone (BZ) up to the second nearest neighbors is reproduced using the Modified Analytical Embedded Atom Method (MAEAM) in
conjunction with the theory of lattice dynamics. The results obtained are consistent with experimental results, and for all the bcc transition metals
taken into consideration, the force constants generated with the MAEAM indicate that the force constants corresponding to the second nearest
neighbors were less than the force constants corresponding to the first nearest neighbors. Additionally, the elements of the force constant matrix
along ϕxy, ϕxz, and ϕyz are all zero (0). All of the resulting dynamical matrices are diagonal. The generated dispersion curves correlate well with the
experimentally generated ones. This demonstrates that the MAEAM is a very effective method for researching the lattice dynamics in bcc transition
metals when combined with the theory of lattice dynamics.
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1. Introduction

Metals are solids with a high electrical conductivity and a large number of mobile electrons. The valence electrons of the atom are
the conduction electrons in metals. The abundance of comparatively weakly bound electrons is a defining characteristic of metallic
crystals. The primary feature of a metallic bond is the decrease in the energy of the valence electrons in the metal relative to the free
atom.

Phonon dispersion is the general term used to describe the lattice properties that reveal the peculiarities of the interatomic inter-
actions in crystals. Numerous crucial details regarding the physical characteristics of solid materials, including specific heat, heat
conduction, sound speed, resistivity, superconductivity, optical and magnetic properties, etc., are provided by the phonon dispersion
relation. Applying experimental research of the lattice dynamics in conjunction with theoretical analysis is the most effective method
for studying interatomic forces, electron phonon interaction, and related phenomena.

In a rigid crystal lattice, like the atomic lattice of a solid, phonons are a quantized mode of vibration. It is impossible to overstate
the significance of phonon research for science and technology. Since the majority of a solid’s physical characteristics, including its
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electrical conductivity, magnetic properties, optical properties, and thermal conductivity, are largely determined by the behavior of
its lattice dynamics, phonon research is a crucial aspect of solid state physics.

Theoretical and experimental studies of the phonon dispersion relation of materials have been conducted recently. The inelastic
neutron scattering method has been successfully used to measure the phonon dispersion relation of solids because of advancements
in diamond-anvil techniques and the expansion of the range for X-ray measurements under static pressure [1, 2].

Because it gives precise information about the atomic interaction, first principle calculation is a good method of determining
phonon dispersion relation of solids. To get the results, the method needs a lot of time and processing power. These factors have
led to the development of certain empirical many-body techniques for studying the physical characteristics of solids [3, 4]. The
Embedded Atom Method (EAM) [5] is one of the empirical many-body models that have been extensively utilized in computer
simulation studies of different defects based on the quasi atom concept and density functional theory (DFT). Each atom’s energy in
the EAM is calculated using the energy required to embed it in the local electron density. There are no ambiguities in this method
because this density is clearly defined in the alloy and at the surfaces. Once more, the computational effort required to evaluate the
EAM energy is comparable to that of simple pair potentials. Large-scale computer simulations of a wide range of phenomena are
therefore still possible. Therefore, the EAM offers a very novel method for calculating metallic systems atomistically. Condensed
matter issues such as bulk properties, grain boundaries, surfaces, and alloys have been effectively addressed by the EAM since its
inception [6].

Notwithstanding the EAM’s many benefits over first principle and pair potential approaches, it has certain drawbacks. For
example, the atomic density (ρ) was not determined analytically; rather, it was fitted from the atomic electron density [7], and
that the spherically averaged density in free electrons differs from the bulk density. This renders the computation untrustworthy.
There are too many parameters in the EAM to be decided upon during computation. These consist of the following: scaling factor
for embedding energy (A), equilibrium nearest neighbor distance (re), cohesive energy Ec (eV), weighting decay factor for atomic
densities t(l), exponential decay factor for atomic density β(P), and density scaling factor ρao. A first neighbor central potential model
for the diamond structure is C11 = C22 [8]. However, silicon doesn’t meet this requirement. For silicon, F”(ρ) is negative, which
deviates from the EAM requirement that C12 − C44 > 0. Because of these and other limitations shown by the EAM and the need to
have better results, different researchers have modified the EAM visa a viz Modified Embedded Atom Method (MAEM), Analytical
Embedded Atom Method (AEAM), Analytical Modified Embedded Atom Method (AMEAM) and recently the Modified Analytical
Embedded Atom Method (MAEAM) [9].

Thus far, the Modified Analytical Embedded Atom Method (MAEAM) has produced better results than all other EAM modifica-
tions. In order to reproduce the phonon frequency of certain bcc transition metals, we employed the Modified Analytical Embedded
Atom Method (MAEAM), the Universal form of the embedding function, and the theory of lattice dynamics.

In preparing this manuscript, we sectioned it into introduction, mathematical techniques, results, results discussion, and conclu-
sion.

2. Mathematical theory and methodology

2.1. The basic equations of the MAEAM

The total energy of a system Et is determined using the modified analytical embedded atom method approach of [10, 11]:

Et =
∑

i

F(ρi) +
1
2

∑
i, j

ϕ(ri j) +
∑

i

M(Pi), (1)

where ri j is the distance between atoms i and j, ϕ(ri j) is the interaction pair potential between atoms i and j, M(Pi) is the modified
term, and F(ρi) is the energy to embed an atom in site i with electron density ρi, which is determined by a linear superposition of the
spherical averaged atomic electron density of the other atoms. It explains the energy shift brought on by the non-spherical electron
(Pi) distribution and the departure from the linear superposition of the crystal’s atomic electron density.

The following is the format of the modified term, pair potential, and embedding function [6]:

M(Pi) = α
∑

i

(
Pi

Pie
ln

(
Pi

Pie

))
, (2)

ϕ(r) =
K0

(rie/r)m +
K1

(rie/r)n +
K2

(rie/r)k +
K3

(rie/r)l , (3)

F(ρi) = −F0

[
1 − ln

(
ρi

ρe

)n] (
ρi

ρe

)n

. (4)
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Table 1: Input parameters for bcc transition metals [9].

Metal a (nm) Ω (nm3) Ec (eV) Ei f (eV) C11 (GPa) C12 (GPa) C44 (GPa)
Iron 0.28664 0.011776 4.2800 1.7900 1440 840 730

Tungsten 0.3165 0.015852 8.9000 3.9500 3230 1270 980
Molybdenum 0.31468 0.01558 6.8200 3.1000 2870 1050 690

Chromium 0.28846 0.012001 4.1000 1.600 2160 410 620

In this work, we employed the universal form of the embedding function while our cut-off radius of interaction potential (rce) for the
bcc transition metals were chosen to reside between the first and second nearest neighbours:

ρi =
∑
j,i

f (ri j), (5)

f (r) = fe exp
[
−β

(
r

rie
− 1

)]
, (6)

and rie is the nearest neighbour distance at equilibrium. For bcc lattice, it is obtained using:

rie =

√
3

2
a. (7)

Equations (8) to (15) which are the input parameters, were taken as constants in using the MAEAM to calculate the total energy of a
system:

F0 = Ec − Ei f , (8)

where EC is cohesive energy while Ei f is the mono-vacancy formation energy.

n =
Ω(C11 + 2C12)

9BΩ − (Ec − Ei f )
, (9)

α =
9BΩ − (Ec − Ei f )

6
, (10)

K0 = −
(Ec − Ei f ) + 9BΩ(n − 1)

6
, (11)

fe = 1 for bcc transition metals [12] and

K1 =
Ω

12

(C11 −C12 − 4C44)
(

rie

r2e

)2

+ 8C44

(
rie

r1e

)2 , (12)

K2 =
Ω

12

(C11 −C12 − 4C44)
(

rie

r2e

)2

+ 8C44

(
rie

r1e

)2 , (13)

K3 =
Ω

12

(C11 −C12 − 4C44)
(

rie

r2e

)2

+ 8C44

(
rie

r1e

)2 , (14)

β =

√
9BΩ

Ec − Ei f
, (15)

Pi =
∑
j,i

f 2(ri j), (16)

where a is the lattice constant, Ω = a3/2, the atomic volume, and C11, C12, and C44 are the elastic constants of the bcc transition
metals under consideration [14]. The computed constants for the total energy were obtained by using equations (8) to (16). Table 1
shows the input parameters for bcc transition metals.
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Table 2: Coordinates of atomic positions with respect to a given origin of the bcc lattice [13].

S/N Origin of Coordinates 1st Nearest Neighbours to the
atom at the origin.

2nd Nearest Neighbours to the
atom at the origin.

1 a
2 (0,0,0) a

2 (1,1,1) a
2 (2,0,0)

2 a
2 (1,1,-1) a

2 (-2,0,0)
3 a

2 (1,-1,1) a
2 (0,2,0)

4 a
2 (1,-1,-1) a

2 (0,-2,0)
5 a

2 (-1,1,1) a
2 (0,0,2)

6 a
2 (-1,1,-1) a

2 (0,0,-2)
7 a

2 (-1,-1,1)
8 a

2 (-1,-1,-1)

2.2. Phonon force constant model

Every nearest neighbor atom closest to the reference atom is given a force constant matrix in order to analytically determine the
lattice dynamics or phonons for a particular crystal structure. By analyzing the second derivatives of the total energy Et of a system of
atoms using equation (1) with respect to the atom coordinates, the atomic force constant was determined using the modified analytical
embedded atom method, a semi-empirical approach. That is:

Φαβ(i j) =
∂2Et

∂uαi ∂u
β
j

. (17)

Equation (1) was inserted into equation (17) to derive the corresponding atomic force constants, which result in [1]:

Φαβ(i j) =
[
ϕ′′(ri j) −

ϕ′(ri j)
ri j

] rαi jr
β
i j

r2
i j

+
ϕ′(ri j)

ri j
δαβ

+
(
F′′(ρi) + F′′(ρ j)

)
f ′(ri j) f ′(ri j)

rαi jr
β
i j

r2
i j

+ F′(ρi) f ′′(ri j)
rαi jr
β
i j

r2
i j

+ F′(ρi)
f ′(ri j)

ri j

δαβ − rαi jr
β
i j

r2
i j


+ δi j

∑
k,i

F′′(ρi) f ′(rik) f ′(rik)
rαikrβik
r2

ik

+ F′(ρi) f ′′(rik)
rαikrβik
r2

ik

+ F′(ρi)
f ′(rik)

rik

δαβ − rαikrβik
r2

ik


+

(
M′′(Pi) + M′′(P j)

)
g′(ri j)g′(ri j)

rαi jr
β
i j

r2
i j

+ M′(Pi)g′′(ri j)
rαi jr
β
i j

r2
i j

+ M′(Pi)
g′(ri j)

ri j

δαβ − rαi jr
β
i j

r2
i j


+ δi j

∑
k,i

M′′(Pi)g′(rik)g′(rik)
rαikrβik
r2

ik

+ M′(Pi)g′′(rik)
rαikrβik
r2

ik

+ M′(Pi)
g′(rik)

rik

δαβ − rαikrβik
r2

ik

 ,

(18)

where (′) and (′′) are the first and second derivatives respectively, δαβ is one if α = β and zero otherwise, α and β refers to Cartesian
coordinates and rαi j rβi j rαik and rβjk are unit vectors.

Only the first neighbor interaction pair potential ϕ was taken into account when calculating the atomic force constant using
equation (17), but the modified terms M(P) and the embedding functions F(ρ) for each of the nearest neighbors were taken into
account. We assumed in our computation that the atoms in the host crystals that are not the second neighbors are undisturbed. The
force constant matrix for the first and second nearest neighbors was created using equation (18).

2.3. Dynamical matrix calculation

In constructing the dynamical matrix, we assigned a force constant to every atom of the nearest neighbour atom to the reference
atom. The expression for the dynamical matrix is taken as [15]:

Dαβ(q⃗) =
1√

MiM j

∑
l

Φαβ(l j)eiq⃗·(⃗rl−r⃗ j). (19)
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Table 3: Calculated model parameters for the bcc transition metals.

Metals F0 Ω (nm−3) n α K0 K1 K2 K3

Iron 2.49 0.011776 0.279466 -0.02428 -0.2562 -0.000197 0.001767 0.000635
Tungsten 4.95 0.015852 0.463045 -0.13258 -0.5514 -0.002587 0.01212 0.000722

Molybdenum 3.72 0.015580 0.552294 -0.14173 -0.4288 -0.002626 0.01173 0.00034
Chromium 2.5 0.012001 0.540453 -0.09133 -0.2178 -0.001985 0.00879 0.000203

Table 4: Calculated force constants Φαβ for the four bcc transition metals for 1NN to 2NN.

Metal Nearest Neighbours Φxx (N/m) Φyy (N/m) Φzz (N/m) Φxy (N/m) Φxz (N/m) Φyz (N/m)

Fe 1NN 295534.0743 295534.0743 295534.0743 295534.3062 295534.3062 295534.3062
2NN 725227578.4 -23188098 -0.23188098 0 0 0

W 1NN 141593.9406 141593.9406 141593.9406 141594.0125 141594.0125 141594.0125
2NN 358296625.6 -0.0719054 -0.07190541 0 0 0

Mo 1NN 105746.6799 105746.6799 105746.6799 105747.2959 105747.2959 105747.2959
2NN 265.309400.8 -0.61603476 -0.61603476 0 0 0

Cr 1NN 199825.3023 199825.3023 199825.3023 199825.8412 199825.8412 199825.8412
2NN 496462110.2 -0.53890638 -0.53890638 0 0 0

Table 5: Force constant matrix (Φαβ (i-j)) generated for the four bcc transition metals corresponding to the first (1NN) and second
2NN neighbours of the atom at the origin ( j = 1, 2, 3 . . . , 14).

Atom Pair Φαβ (i-j) Atom Pair Φαβ (i-j) Atom Pair Φαβ (i-j)

0-1

A 0 0
0 A 0
0 0 A

 0-2

A 0 0
0 A 0
0 0 A

 0-3

A 0 0
0 A 0
0 0 A


0-4

A 0 0
0 A 0
0 0 A

 0-5

A 0 0
0 A 0
0 0 A

 0-6

A 0 0
0 A 0
0 0 A


0-9

B 0 0
0 C 0
0 0 C

 0-10

B 0 0
0 C 0
0 0 C

 0-11

B 0 0
0 C 0
0 0 C


0-12

B 0 0
0 C 0
0 0 C

 0-13

B 0 0
0 C 0
0 0 C

 0-14

B 0 0
0 C 0
0 0 C


For bcc monatomic transition metals, Mi = M j = M so that equation (19) becomes:

Dαβ(q⃗) =
1
M

∑
l

Φαβ(l j)eiq⃗·(⃗rl−r⃗ j). (20)

In setting the dynamical matrix for the bcc structure in this research work, we assumed that the interatomic forces are negligible
beyond the second nearest neighbours. The first to the second atomic nearest neighbours and their various coordination numbers is
shown in Table 2. To get the phonon dispersion curve of the crystal, we plotted the eigenvalues (frequency ω) obtained from the
dynamical matrix against the wave vectors (k).

3. Results

The input parameters and the calculated parameters for the Modified Analytical Embedded Atom Method using equations (1) to
(16) are presented in Tables 1 and 3, respectively.

4. Discussion of results

Using the Modified Analytical Embedded Atom Method of [16], this study aims to obtain force constants that will be used to
create a dynamical matrix. After diagonalizing the dynamical matrix, the dispersion curve was obtained by plotting the eigenvalues
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Table 6: Calculated dynamical matrix elements (Dαβ(q⃗)) for the four bcc transition metal for 1NN to 2NN.

bcc Metal NN Dxx(q) Dyy(q) Dzz(q) Dxy(q) Dxz(q) Dyz(q)

Iron (Fe) 1NN 0.084668521 0.084668521 0.084668521 0 0 0
2NN -0.00129859 -0.00129859 23320.09829 0 0 0

Tungsten (W) 1NN 979.1071673 979.1071673 979.1071673 0 0 0
2NN -0.000739 -0.000739 2311430.85 0 0 0

Molybdenum (Mo) 1NN 1876.335285 1876.335285 1876.335285 0 0 0
2NN -0.0014162 -0.0014162 4429157.93 0 0 0

Chromium (Cr) 1NN 3462.098258 3462.098258 3462.098258 0 0 0
2NN -0.002613 -0.002613 8172409.58 0 0 0

Figure 1: Phonon dispersion curve for Fe along [1,0,0], [1,1,1] and [1,1,0] directions: MAEAM and experiment [15].

against the wave vectors. The force constant generated using the MAEAM is displayed in Table 4, the force constant matrix is
tabulated in Table 5, and the dynamical matrix elements produced are shown in Table 6. All the off diagonal elements of the
dynamical matrix generated using the MAEAM are zero (0). This demonstrates that all the metal’s dynamical matrices are diagonal.

Similar to this, the phonon dispersion curves of the bcc transition metals Fe, W, Mo, and Cr along the high symmetry directions
[1,0,0], [1,1,1], and [1,1,0] have been computationally and analytically replicated using the Microsoft Excel spreadsheet up to the
second nearest neighbors using the MAEAM, and the results have been compared with experimental findings.

The peculiar spots on the bcc lattice’s first Brillouin zone are denoted by the letters Γ, H, P, and N. Figures 1 to 4 show the
dispersion curve using the MAEAM and experimental results for the bcc metals. The eigenvalues derived from diagonalizing the
dynamical matrix are responsible for the many branches of the phonon band structure that are observed. There are two branches of
dispersion (Acoustic Transverse (T) and Acoustic Longitudinal (L)), according to the frequency values measured along the point of
high symmetry directions (Γ →H, H→P, and P → Γ). After that, a degeneration of the Acoustic transverse branch caused the two
branches to break into three branches along the Γ→N direction.

The majority of the phonon dispersion curves derived by MAEAM are consistent with those acquired by experiment. This work
has somewhat reduced the anomalies between the determined and experimental values, in spite of the fact that phonon dispersion
curves of bcc metals are full of anomalies [16].

5. Conclusion

Using the Modified Analytical Embedded Atom Method (MAEAM) in conjunction with the theory of lattice dynamics, the force
constants and the dynamic matrix for the bcc transition metals (Fe, W, Mo, and Cr) have been successfully generated up to the
second nearest neighbors (2NN). The phonon dispersion was calculated along the Brillouin Zone’s (BZ) primary symmetry points

6
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Figure 2: Phonon dispersion curve for W along [1,0,0], [1,1,1] and [1,1,0] directions: MAEAM and experiment [15].

Figure 3: Phonon dispersion curves of Mo along [100], [111] and [110] directions: MAEAM and experiment [15].

and compared to the experiment’s findings. The experiment’s results and the dispersion curves generated by the MAEAN agree well.
Thus, we conclude that the MAEAM is another potent tool that can be utilized to reproduce bcc transition metals phonon dispersion
curves that are equivalent to experimental data when combined with the theory of lattice dynamics.

Data availability

Data will be made available upon reasonable request from the corresponding author.
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Figure 4: Phonon dispersion curves of Cr along [100], [111] and [1,1,0] direction: MAEAM, experiment [15].
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