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Abstract

This study examines a broad subclass of non-Bazilevi¢ functions that includes several subclasses of g-bounded turning functions and g-
Sakaguchi functions. We link the definition of the class with a modified Opoola g-derivative operator, quasi-subordination, and a few number
of mathematical concepts such as g-calculus and infinite series formations. Among the achievements in this work are the estimates for the early
upper coefficient bounds and the Fekete-Szego inequalities having complex parameters. In general, this unique class reduces to various recognized
classes of non-Bazilevic functions when some of the parameters take values within their interval of definition.
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1. Introduction and definitions
Let A denote the class of functions that are analytic in the unit disk & and of the form
f(Z)=Z+Zaij (ze&:={z:zeCand |7 < 1}), M
j=2

normalized such that f(0) = f'(0)—1 = 0. More so, let ’<’ represent the well-known notation for subordination. Thus, for f, F € A,
then f < F if there exists an analytic function

@) =ciz+er+a0 + (€0)=0, @I <|d<1, z€8), 2)
such that f(z) = F(&(z)). Suppose F is univalent in &, then
f2) < F(z) = f(0) = F(0)and f(E) c F(&).

*Corresponding author: Tel.: +234-802-243-4232.
Email address: risikat.bello@kwasu.edu.ng (Risikat Ayodeji Bello ")


https://orcid.org/0000-0003-3482-5839
https://orcid.org/0000-0002-2657-7698
https://orcid.org/0000-0003-0621-0028
https://orcid.org/0009-0001-5402-7191
https://nsps.org.ng
https://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0003-3482-5839

Bello et al. | African Scientific Reports 4 (2025) 326 2

In the sequel, f is quasi-subordinate to F (that is f < F) if there exits an analytic function

f=b+&z+bHT+... (E@IL, z€8), (€)

such that
f(@) = ERF (e(2)). “4)

Historically, Robertson [1] initiated the concept of quasi-subordination while clearly, when &(z) = 1 in Eq. (4), then quasi-
subordination becomes subordination. More so, if &(z) = z in Eq. (4), then quasi-subordination becomes majorization (that is
f < F), a concept initiated by MacGregor [2]. Obviously,

f@D=F@) = fQ=(@Fk = fO<FE (&)

For further information, see Ref. [3].

1.1. Non-Bazilevi¢ functions

In the field of complex analysis, particularly within geometric function theory, Bazilevi¢ functions, see Ref. [4], represent a
class of analytic and univalent (one-to-one) functions defined in the open unit disk. These functions generalize many analytic and
univalent functions such as starlike, convex, bounded turning, close-to-convex, and Yamaguchi functions which are characterized by
differential inequalities involving some underlaying parameters and auxiliary functions.

However, non-Bazilevi¢ functions are those analytic functions in the unit disk that do not satisfy the defining conditions of
Bazilevi¢ functions. Non-Bazilevi¢ functions may still be analytic and univalent but do not adhere to the specific geometric and
analytical properties required by the Bazilevi€ class. This distinction is significant because Bazilevi¢ functions often exhibit strong
geometric behavior such as mapping the unit disk onto convex, starlike, spirallike, etc. domains while non-Bazilevi¢ functions may
display more irregular or less constrained mappings.

The study of non-Bazilevi¢ functions is important as it helps to understand the limitations of the Bazilevi¢ class and broadens
the scope of univalent function theory. These functions also provide counterexamples or test cases for conjectures in the geometric
function theory. While Bazilevi¢ functions have structured representation formulas and differential subordinations, non-Bazilevi¢
functions lack these, making their analysis more complex and less predictable. Despite this, they remain a valuable subject of
investigation in modern pure mathematical research. The class of non-Bazilevi¢ functions was introduced by Obradovié¢ [5] and
defined as functions that satisfy the conditions

1+
Re {f’(z)(}%) }>0 0<B<1,z€8).

More details on subclasses of non-Bazilevi¢ functions are accessible from Ref. [6].

1.2. Some classes of analytic functions

A class of functions that plays an essential role in the development of many classes of analytic (and univalent) functions is the
class of Carathéodory functions. This class was introduced by Carathéodory in 1907 and defined as functions of the infinite series
form

P@) =1+ piz+pa2 +p3z’ - (ReP@) >0, PO) =1, z€&). ©)

Let the class of Carathéodory functions be represented by £7". An important function in class 7 is the Mobius function

oo

1+z j
Lo(z)—l—_z—1+2;z- (z€ &), 6)
or one of its rotation functions
1+e? O s
Li@)= =142 eMF (GeR z€8), %
1= €l6Z —

that maps the unit disk onto the whole open-right-half-plane of the complex plane. This property primly applauses it as the extremal
function in 7 where it plays a significant role in solving many extremal problems. In 2020, Umar et al. [7] introduced the subclass
PT (c,A, B) C PT . A function P(z) in Eq. (5) is said to be in the class P7 (c, A, B) if it satisfies the subordination condition

1+ Az

1
1+ -[PG) - 1] < ——
C[ (2) ]<1+Bz’
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such that c € C\ {0}, -1 < B < A < 1, and z € &. Furthermore, the application of the subordination principle shows that

1+ Ae(z)

1
1+ Z[P(Z) -1]= 1+—B£(z)’

from where simple calculation gives

c¢(A - B)e(z) + 1 + Be(z)
1 + Be(z)
=1+c(A-=B)z—cBA-B)Z +--- (8)

P(z) =

= 1+c(A-B) Z(—B)f“zf.

J=1

We observe that P7(1,1,—1) = P, the class of functions in Eq. (5); P7 (1,A, B) = P(A, B), the class introduced and studied by
Janowski [8]; and for 0 < A < 1, PT (1 — 4, A, B) = P(4, A, B), the class introduced and studied by Polatoglu et al. [9].

1.3. On certain g-differential operators

Jackson [10] introduced and studied many properties of the g-derivative operator D, defined as

20 = HOZ8C0)

Thus, for function f € A of the form Eq. (1) and for 0 < g < 1, the g-differential operator D, that maps A onto A is define on f by

O<g<1).

D f(0)=f(0)=1

J@-flgn) _ 1+ Zz[j]qajzj_l (z#0)
j=

Dy f(2) = { (1o : ©)
f@asqg—1
/() = Dy(Dy f(2) = 217 =gl 22
=
where .
[j]q=11__z]=1+q+q2+q3+-~+q"“, (10)

and clearly, lirnl [/l = J. The g-derivative operator have been widely applied by many researchers, see Refs. [11-16]. Using Eq. (9),
q—)

we give a comprehensive definition of a modified Opoola g-derivative operator initiated by Alatawi and Darus [11].

Definition 1.1. Let D)y be a g-operator that maps A to A and defined as follows.

Dy @) = ),
DY f(2) = y20, f(2) = yzv — ) + 2(1 = )(1 = y) + [x + (v = u = YY) = g f ),
DZ,M,Vf(Z) - Aq,y(Z)l'”"’f(Z))’

q,X,y: q,%.y

so that in general,

Dy @) = Agy (D5 F(2)),
which corresponds to
Dynf@ =z+ Z[x +([jly+v—u-x)yl"a;z) =7+ ZAf“ij’ (1)
=2 =2
where

z2€&nef0,1,2,..},y=>0,v=>00<u+x<v, } 12

g€ ©.1), [l =L, and A; =[x+ ([l + v —u— 2]’

We however remark that the g-operator in Eq. (11) generalizes the following earlier known (g-)operators.
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L. lim DY f(z) = im D7 f(2) = f € Ain Eq. (1).
g—1 o g—1 -
2. hm Z)” - 'f f2) = hm Z)" . vl f(z) = D" f(z) is the Sdldgean differential operator [17-21].
3. Dgz'l‘ f@= DZ;VI f(2) = D}, f(z) is the Séligean g-differential operator [16].
4, lirrll Doy f@) = lirrll Dy f (@) = D} f(z) is the Al-Oboudi differential operator [22].
4 4 :

5. D f(2) = Dy f(2) = D) f(2) is the Al-Oboudi g-differential operator [23].

6. 11m Z)Z Lf; f(2) = D™ f(2) is the Opoola differential operator [22, 24-26].

7. DZ T ‘V f(2) is the Opoola g-differential operator [13, 14].

2. Lemmas and proposition
Lemma 2.1. ([27, Lemma 2]). Let £(2) be as defined in Eq. (2), then
el <1 (jeN).
Lemma 2.2. ([28, Lemma 2]). Let £(2) be as defined in Eq. (2), then for ® € C,
ley — @et| < max(1; D).

Proposition 2.3. Let f € A, then

J - . j
f(59) = f(22) P*F%Wﬁ @+Zwm)

_ j=2 B o
s—1 - s—t _Z+Z7’1aﬂ’
for .
s/ =t )
Yi= o (jel{l,2,3,...),
so that ,
il (1488 5 0 :
F(s2) — F(12) - A~ - “ e 13
(f(sz) f(tz)) ~Braa 2Z+( 5 N~ Brsas| T+ (13)
where we declare that
2€8, 820, s5,teC\ {1}, s#1, and || < 1. (14)

3. Core results

3.1. A novel class of analytic functions
Using the aforementioned details, we therefore introduce and study the properties of the following class of analytic functions.

Definition 3.1. A function f € A of the form Eq. (1) is said to be a member of the class 1% (s, @,B; ¢, A, B) if and only if it
satisfies the geometric condition

B
Us=9 ) 1< [P@) - 1], (15)

1- a)bq(@"’u’v (@) + agq(ﬂn’u (@) (W

g%,y q,X.y:

where 0 < @ < 1, and the declarations in Eq. (12) and Eq. (14) hold.
Remark 3.2. The following classes hold for some specific values of certain parameters.
1. If g — 1 and n = 0 in Eq. (15), then we have the class of functions that satisfy the quasi-subordination condition

(ﬂ)f

S A P(z) - 11.
700 — @ 1 <[P(z)-1]

(I-ao)f'@+af (z)(

This class was studied by Shah ez al. [6].
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2. If g > 1,n=0and s = 1 in Eq. (15), then we have the class of functions that satisfy the quasi-subordination condition

z(1-1)

B
— ] -1 <= —-1].
7@ —f(a)) < Pe=1l

(I-a)f@+ af’(z)(

3. If g —» 1,n =0, and s = 1 in Eq. (15), then we have the class of functions that satisfy the quasi-subordination condition

B
Ao
f@) - f(t2)

(I-a)f@+ af’(z)(

1+ Az 1
1+ Bz '

This class was studied Nunokwa et al. [29].

4. Ifg > 1,n=0,and @ = 1, in Eq. (15), then we have the class of functions that satisfy the quasi-subordination condition

z2(s —1)

B
— | -1 P(z) —1].
(R f(tz)) =P -1l

f’(z)(

5.Mfg—>1,n=0=a(ora—-1=0=p)in Eq. (15), then we have the class of functions that satisfy the quasi-subordination
condition

f(@-1=<[P@z)-1].
6. If g > 1,n=0,and s = @ = 1 in Eq. (15), then we have the class of functions that satisfy the quasi-subordination condition

zZ(1—1)

B
2D ) <[P - 11
f(z)—f(tz)) =<IP@ -1l

'@ (
This class was studied by Sharma and Raina [30].
Closely related to the quasi-subordination condition Eq. (15) are:

7.
(1 - t)f’(z))
Re |[————=| > 0,
(f(z)—f(tz)
where 7€ §,0< o< 1,1 e C\ {1}, |f| < 1, and studied by Owa et al. [31].

’ Z(l B t)
+af'(z) (—
f f@) = f(12)
where 0 < a < 1,82 0,7re C\ {1}, |f| < 1, and studied by Srivastava et al. [32].

NG

B
(1-« )—lﬁ[P(z)—I],

% 2f(2) ) 0,
¢ (f(z)—f(z) g

where z € & and studied by Sakaguchi [33].

In this work, we introduce a new subclass of non-Bazilevic functions defined by modified Opoola g-derivative operator and quasi-
subordination. We thereafter explore some coeflicient estimate properties and the Fekete-Szegd functional with complex parameters
for the class. Henceforth to avoid repetition, let all parameter be as defined in Eq. (12) and Eq. (14).

3.2. Coefficient bound estimates
Theorem 3.3. If f € A belongs to the class 13\ (s,t,a,pB; ¢, A, B), then

|cI(A — B)I&ol

S 16
S 21,4 — aprl (10
and cl(A - B)
(A -
jas| < m[|§o|max{1,|®|} +lall. a7
where A - B){(1 2[2],A
0= g BCA = B+ By — 220, M)y a8

2(121442 — aBy2)?
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Proof. Let f € A, then the application of quasi-subordination principle in Eq. (15) shows that

(s—1z
f(s2) = f(t2)

Putting Eq. (2), Eq. (3), and Eq. (8) into Eq. (19) gives the expansion

;
(1 =)Dy (D f(2) + @Dy (D f (Z))( ) -1 =£@[P(e2) - 1].

RHS =c(A — B)e &0z + {c(A — B)(e2 — Be))éy + c(A — B)e 11}z + -+
and, using Eq. (9), Eq. (11), and Eq. (13) in Eq. (19) gives the expansion

ap(L +B)y;

LHS =([2]4A2 — afy2)axz + {( >

Further, the comparison of the terms in Eq. (20) and Eq. (21) shows that

([2]4A2 — aBy2)as = (A — B)e1&o,
where simple rearrangement yields
oy - LA By
[21,42 — aBys’

to give
|cl(A — B)le1l€ol
a2| < —’
21442 — aBy-|

so that the application of Lemma 2.1 gives the result in Eq. (16). Again, from Eq. (20) and Eq. (21) we get

af(L +B)y;
2

where the substitution for a% and further simplification lead to

(A = B){(e2 — Be)éo + £1€1) B aByrc*(A = B{(1 +B)y> = 2[2],A0)e7€;
(31443 — aBy3) 2(1214A2 — aBy2)* (131445 — aBy3)

az =

to get

- [Z]qaﬁh/\z) a3 + ([31,45 - af,873)a3}z2 4+

- [2]qaﬁ72/12) a5 + (31,43 — aBys)as = c(A - B)(ex — Bs})éo + ¢(A = Bsié,

_ c(A-B)séy  cBA-B)Eily  c(A-Beié  afyac®(A - B +B)ys - 22044006165

as

which further simplifies to

T BlgAs—afys  BlyAs — afys * [314A3 — oBys 2([214A2 = aBy2)* (131445 — aBy3)

c(A - B)& {52 ~ [B N afy2c(A = B)Y{(1 +B)ys — 2[2](1/\2}50]82} N c(A - B)e€

%= B1,45 — afys 2(21,4 — afy,)? U Bl - apys
Now,
Icl(A — B)io| aByc(A — B+ Byys — 212,000 | o] Icl(A = B)la1lién]
las) < e T B0 2—[B+ - ]1 :
31,43 — aBys| 221,42 - afiy2) 31,43 — aBys|
or

lc|(A = B)|&ol

lcl(A — B)le1||€1]
(31443 — aBysl

131443 — B3l

2

las| < & — Lg]

(19)

(20)

2n

(22)

(23)

where @ is as declared in Eq. (18). Further, the application of Lemmas 2.1 and 2.2, and some simplifications give the result in Eq.

7).
We have the following corollaries for some specific values of a.

Corollary 3.4. If f € A belongs to the class Ty¢y(s,t,a,B; ¢, A, B), then for a = 0,

|cI(A = B)I&ol

laa| <
? 21,42

s

and (A - B)
(A -
jas] < m[l&olmaX{l;lBl} + ],

O
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Corollary 3.5. If f € A belongs to the class T, 'vy(s,t,a,B; ¢, A, B), then for a = 1,

q,x,y
c|/(A—-B
] < A= Bl
121,42 - B2
and cl(A - B)
Cl(A —
Gl — max {1; |Q|} + s
Jas| umm—me' {1100 + &1
where

By2c(A = B){(1 + B)y> — 2[2]4A2)60

Q=B+
2([2],42 = By2)?

3.3. Fekete-Szego coefficient estimates
In 1933, Fekete-Szeg [34] established a precise upper bound for the functional

o(t, ) = las — 7a3), 24)

where 7 € R and a, and a3 are f coeflicients in (1). Many academics have studied this functional for various subclasses of A,
as evidenced by the volume of literature since its introduction. In 1986, Pfluger [35] presented the functional (24) with complex
parameter 7. Literally, the Bieberbach conjecture serves as the foundation for the analysis of this function. See Ref. [36] for further
information.

Theorem 3.6. If f € A belongs to the class Ty yy(s,t,a,B;c, A, B), then

XY

lcl(A = B) .
wnﬁ<EEE:$EMmmﬂu%H@@

forteC, and
aBy2c(A = BI{(1 + B)y2 — 2[2],A2160 . Tc(A — B)([31,45 — aBy3)éo
2([2],A2 — aBy2)? ([2],42 = aBy»)?

Proof. Using Eq. (22) and Eq. (23) in Eq. (24) means

Y=B+

(25)

2 CA-Berty  cBA-Bleily (A= By
> BlyAs—aBys [314A3—aBys  [31443 — aBys
aBy2cX(A - B +Byy2 = 221,628 [ c(A- By \
C 2(121,4A2 - aBy2)X (31,43 — aBys) _T([2MA2—Oﬂ72)’

as —

where we further simplify it to achieve the equation

2

a3 —1a;
_ _cA- B {82 B [B N afyc(A = B){(1 + B)y> — 2[2],A21&0 N Tc(A - B)([3],A3 - aﬁ%)fo]gz}
31443 — aBy3 2121442 - afy2)? (121442 = fy2)? :

c(A — B)e1é
[314A3 — aBys

Now,

- | < LAA=BI | ol A = Bl
I[31443 — aBysl I[314A3 — afys|
where YV is as declared in Eq. (25). Thus, the application of Lemmas 2.1 and 2.2 gives the result in the theorem. O

We have the following corollaries for some specific values of a.
Corollary 3.7. If f € A belongs to the class 1y (s, t, @, B; ¢, A, B), then for a = 0,

A—-B
or. ) < S ol max (13100 + i
/13

forteC, and
Tc[3],A3(A - B)éy

[21243
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Corollary 3.8. If f € A belongs to the class Tyy(s,t,a,B; ¢, A, B), then for a = 1,

lcl(A - B) ,
(T f) < W—_M[m max {1; 191} + 1],

forteC, and

ByacA = B)(1+ B2 = 212, M00é0  Te(A = B)([31,43 — Bys)éo

=8B
" 220,42 — aBys)? T Rl - By

4. Conclusion

In this work, we explored a subclass of non-Bazilevi¢ functions that included several subclasses. The definition of the new class
was a combination of a modified Opoola g-derivative operator, quasi-subordination, and g-calculus. Among the results obtained are
the upper bound of the coefficient estimate and the Fekete-Szego inequalities with complex parameters for the class. The new class
reduces to various known subclasses of non-Bazilevi¢ functions when some of the the parameters take values within their interval of
definition.
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