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Approximate solution of higher-order oscillatory differential
equations via modified linear block techniques
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Abstract

In many areas of science and engineering, problems modeled by ordinary differential equations (ODEs) often lack analytical solutions, requiring
the use of numerical methods for approximation. The proposed method tackles the challenges of solving higher-order oscillatory differential
equations and introduces a new linear block technique for directly solving these equations. This method improves accuracy, reduces computational
effort, and simplifies coding complexity compared to previous approaches. A generalized algorithm is presented to derive the proposed method,
which enhances existing techniques for second-order and higher-order oscillatory problems. The basic properties of the method were numerically
analyzed, confirming its accuracy, stability, consistency, and convergence. The proposed method proves to be efficient and suitable for various test
problems, including real-life problems, which demonstrate its accuracy as compared to the existing methods.
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1. Introduction

In science and engineering, many problems modeled with ordinary differential equations do not have exact analytical solutions,
making it essential to rely on approximate solutions. These approximations are obtained using numerical methods, which lead to
the discretization of the solutions. Discretization represents the solution as values of the function at specific grid points, and these
values are connected by interpolating the function, as highlighted in studies such as Refs. [1, 2]. The resulting oscillatory differential
equations (OSDE) give rise to higher-order differential equations (HDE) expressed in the form:

W = F (80, YN = e, m= 1,2, (= D), e)
are considered in this study, where y,,—1, m = 1,2,...,(n — 1) are constants. Many physical issues remain underexplored and

inadequately addressed by researchers. While some challenges in fields such as social sciences, technology, and science have
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received attention, numerous others are still awaiting thorough investigation. Oscillatory phenomena play a crucial role across these
areas, and differential equations are fundamental for modeling such behaviours, as discussed in Refs. [3, 4].

Historically, solving Eq. (1) involved reducing it to a system of first-order ODEs and applying numerical methods designed
for first-order systems, as outlined in Ref. [5]. However, this approach posed significant challenges, including high computational
demands, increased manual effort, coding complexity, and reduced accuracy due to error accumulation. Researchers, such as those in
Refs. [6-8], have extensively discussed these limitations. In response, direct methods for solving higher-order differential equations
were proposed in Refs. [7-12]. As a result, various efforts have been made to develop numerical schemes that solve Eq. (1) directly
using different approaches. Notably, Refs. [13—15] have proposed methods specifically designed to address second-order oscillatory
problems of this form:

Y= fty.y),  yto) =po,  Y(t) = pr. )

Likewise, methods have been introduced by Refs. [16—18] to address the solution of

V7= fy, Y.y, yt) =po, Y () =m, Y'() = . 3)

Finally, certain researchers Refs. [5, 9, 12, 19] developed different methods to solve:

Y=y YY), y) = pe, Y @) =, Y () =2, ¥ (83) = . )
Similarly, other methods used by different researchers include the following: Ref. [20] employed a one-eighth step hybrid block
method (OSHBM) to solve second-order initial value problems of ODEs. In Ref. [21], a third derivative hybrid block method
(TDHBM) was used to obtain approximate solutions for third-order initial value problems. Ref. [22] simulated third-order linear
problems using a single-step block method (SSBM), while Ref. [23] employed a monohybrid point linear multistep method (MH-
PLMM) to solve nth-order ODEs. Finally, Ref. [24] applied a two-step hybrid block method (THBM) to handle higher-order initial
value problems of ODEs.

The proposed method aim to improve the accuracy and effectiveness of the existing methods discussed in Refs. [4, 13-19, 25, 26]
while enhancing the partitioning for greater efficiency.

The article is organized as follows: In Section 2, we develop a generalized algorithm for the n-step linear block techniques. In
Section 3, we formulate the scheme for the proposed method and prove some corollaries. Section 4 presents numerical problems,
along with computational results and graphical representations, to demonstrate the accuracy of the proposed method. The final
section, Section 5, provides a discussion of the results, a summary, and concluding remarks.

2. Construction of linear block technique

The proposed linear block technique was derived based on the methods outlined in Refs. [3, 5, 12]. According to Ref. [12], the
linear block technique was first proposed by Adeyeye and Omar [27], for solving second order initial value problems. This study
adopts the linear block approach using (O (i) 2) partition for the direct solution of Eq. (1).

2.1. Generalization algorithm for the k-step

The linear block technique was utilized in deriving a new method for the direct solution of Eq. (1), where Y11 = Vnta> Yntbs -« -5 Yn+k)  anc
( ﬁl’za, y,(f: by yﬁljj k) . The unknowns are obtained by considering the generalized algorithm:
S ERY ), N
Ynre = Z Tyy) + Z (‘/’i.ffn+j)» {=a, b, ...,k 5)
j=0 j=0
its higher derivatives
4—(c+1) ;
&h
)’Z+§ = Z T)’;‘Hd +6¢=lg=a b, .. k> 2=a,b,...k)» (é=a,b, ... k) (6)
=

with Y¢; = U™'G and Q;; = U™' D where

Eny's

4
11 1 -k o Ao
o @ ew ) G0N &
@’ ey hy (éh s
a EmCo
U=|0 2! 2 |, G=| 6 |- D= G=omn
0 (ah?”’ (bh?m L (kh)'m (é;h)4+/v1 (gh)(”.,,g)#{
m! m! m! (4+m)! ((m=¢)+k)!
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So, to derive the new methods, the subsequent Corollary were proved.
Corollary 1

The k-multistep method associated with Eq.
order scheme based on the block algorithm. This can be confirmed using Egs.
7

2).

747 2’ 47

(Oll

b 4 b 2 2
Proof

3
4

1

5

Now simplifying (5) and (6) using the partitioned points, we have:

cCc oo o0 o0 C O O~

(n/2)?
2!
/2’

31
/2
41
(n/2)°
51
(n/2)°
6!
02

7l
(h/2)
81

Solving Egs. (5) and (6), we have:

- 4
(N 1 1 1 Ll
3h h 5h % Ih 2% &hy’
4 2 4 4 51
Gh/4Y P (Shi4Y <3h/2>2 anjap  ew? @n
20 20 20 21 21 i
Gh/AY i (5hj4) (3h/2>“ a4} Chy @hy!
31 3! 31 31 3! T
(3h/4)4 n (511/4)4 (3h/2)4 Th/4*  @2hy?* G = @ | p-=
4 4 n |- G=|%5- |- P=
(3h/4)5 w (5h/4)5 (3h/2)5 (Th/4°  @2hyY (fh’)g
5] 51 51 =5
(3h/4)6 W (5h/4)6 (3h/2)6 Th/4°  Oh) (f%m
6l 6! 6!
Ay W (Sh Sy (Sh /2)7 anjay’  @ehy’ 14
7 7 g 71 71 (511),
GRS B Gh/4) GURE S @
81 81 81 81 81 8 Son
113 537
Yo £=0.-5.5.1,5.5,5.2
28824

Substituting & = &, + xh, the polynomial takes the form:

where

Y(&n + xh)

=Q1/4Yn+1/4 T Q1Y+l T @3/2Yn+3/2 + A2Yn42

+ 1 Bofo + Bijafueija + Biyafurija + Bajafurssa + Bifast
+ Bsjafursia + B farzn + Brjafusiia + Bafur2)s

64 416 \
01/4—§—§§ —f—ﬁf
31
a1=—2+?§—10§2+§§3,
§ 44 52, 16,
03/2=§—?§+—§——§,

3 17
®=-z+ —f——f f
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(6-7)!
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(10-7)!
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(fh)lz T

(5) uses only a block method. The corollary is extended to develop a higher-
(5) and (6) as a block at the specified points:

)
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b = I, 5200825781, 14625071 , 4165541 §3+i§4_ 761 oy 2953166
07 23024320 © 7664025600° 76640256007  348364800°  24°  8400° = 226800
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700° " 1055 T a5 T 135t Taeirist
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The block algorithm (5) is expanded to yield
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el = Vat 3hY, + 5 (%h) W+ (ih) + h4(lﬁ011fn +012furl H 013 f0n ) + 01403 + Yoisfan
+o16fpes H 0170503 H018f501 + '//019fn+2),

el = Va+ 3hY, + 5 (-h) Yo+ 3 (-h) n h4(lﬁ021fn o fuel H Y02 fu ) + Y02t + Yorsfon
Y026 fpes Y021 fp 3 + Y01 + 'ﬁ029fn+2)

2
oy 43 1 (3 1 (3 4
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Y036 fpes + Y037 503 + o381 + l//039fn+2),

172 3 4
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’ 2 17 177
Yurd = Va3V, + 5y (%h) i+ (%h) + h4(¢061fn + 062 fpt + Y063 Snr L + Wosa iz + Yoes fust
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7 1 (7 1 (7 4
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+ose S s T Y0703 + Yoss S + ¢089fn+2)-

Likewise, expanding Eq. (6), we obtain:
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4h)2 1
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VAT + 3y Qi f + Qainfs + Qoisfras + Qiafs
+ Qoisfurt + Qoiefies + Qurfres + Qusfiez + Q1o fain),
b W= yi+ Shyl + R Qo1 fo + Qoo furt + Qo3 fyir + Qonafyys
+ Qs fart + Qa6 fs + Qoxrfres + Quasfi1 + Q2o fain),
V! 3= i+ 3hy + h*(Qaa1 fo + Q32 fuet + Qo3 fyp1 + Qozafy
+ Qo35 furt + Qosefes + Qo37fes + Qossfez + Qozofuin),
Yirer = Y+ by + B (Qoar fr + Dz fust + Qa3 frr + Qoaafyys
+ Qoasfurt + Qoasfyes + Qoarfies + Qoagfryz + Q049 fur2),
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+ Qoss furt + Qosefyes + Qostfrs + Qossfe1 + Q59 fur2),
y;g =y, +3hy) + W Qa1 f, + Q62 fpr 1t + 263 fs 1 + Qo6a s
+ Q65 furt + Qae6fyes + Qoerfes + Qaes frr1 + Q6o fur2),
Yoz =V b+ Qo S+ Qamafry + Qars iy + Qanafig
+ Qo795 fur1 + Qz76fn+g + Q277fn+% + Qz78f,,+% + Q079 fur2),
Vs = Y+ 20y + B (Qos1 o + Qoga fst + Qogafrpt + Qogafys
+ Qogs furt + Qosefes + Qog7 s + Qoss f1 + Qogofuin)-
" o= Y+ h(Q3llfn + Q1 fped + Q33 fprt + Qa1afyrs + Qaisfan

+ Q31605 + Q17fprs + Qaigfpr + Qs19fs2)

+ Quazfoel + Quiafy s + Quasfarr + Quasfips + Quarfyys + Quasfyr + Ql49ﬁl+2),

1+ Qsafupn + Qusafys + Qussfurr + Qusefies + Qisrfies + Qusgfyr + Qisofosa)

1+ Qieafir + Queafes + Quesfurt + Ques s + Querfris + Qiesfri + Q169fn+2),

1+ Qnafin + Quaafos + Quasforr + Quisfyes + Qurrfps + Qi + Ql79fn+2)

(10)
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Hence, we determine the unknown coeficients of ¢ and Q by solving y; = UG and Q. = U™'D.
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=y, +h (Qszlfn + Qe frpt + Qan3frt + Qaoafy s + Qaos fur
+ Q36 f s + Q327 S8 + Qagfr1 + Qsz9fn+2),

=y, +h (9331fn + Qanfot + Qazzfrt + Qazafys + Qass fur
+Q336f3 + Q337f503 + Qasgfr 1 + Q339fn+2),

=y, +h (9341fn + Qi frpt + Qaazfrpt + Qaaafy s + Qaas for
+Qa46 05 + Qarfrs + Qaagfr1 + Q349fn+2),

117
=3+ h(Qasif + Qa52fprt +Qas3fpr ) + Qasafyy s + Qass fur
1

z
+ Q356 f s + Qa57fp3 + Qasgfr1 + Qss0.fue2)
4
=Y+ h(Qse1fu + Qa2 fpr 1 + Qa3 i1 + Qa6afpis + Q365 funt
+Q366.f 3 + Qa67f503 + Qaes S + Qs60.fu12)

=y, +h (anfn + Qs fret + Qan3frt + Qarafy s + Qa75far

+ Q376 fs + Qa77fp03 + Qargfry1 + Q379fn+2),

Yniza =Yn +h (st1fn + Qagafpt + Qa1gfr 1 + Qagafyis + Qags fr

+Qag6fes + Qg7fprs + Qaggfrr + Q389fn+2)~

3. Numerical scheme of the proposed method

The sufficient and necessary conditions for analysis were basically scrutinized in this section.

3.1. Order and error constant

(1)

We consider the linear operator L[y (¢,) ; k], we use Corollaries 2 and 3 below, to determine the order and error constant of the

proposed method.
Corollary 2

According to Ref. [3], the linear operator, L [y (z,) ; h] associated with the local truncation error of the proposed method is C07h07y°7 (t)+

0(n!).
Proof

As stated in Ref. [3], the linear difference operators corresponding to the proposed method are expressed as:

LIy k] = y (1 + 1) - (ai (1 31) + s v )+ g (1 30)

3
a2 (o4 204 Y (B0 o + BeO ) )

i=0

LIy):h] = y(ta + 1h) - (a% (1 §9) + 0 1)+ a3 (1 + 30)

¢
bz G+ 20) + Y (B0 s + B o) )

i=0
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L[y(t,);h] = y(tn + %h) - (a% (t,, + %h) +ay (t, +h) + a/% (tn + %h)

¢
G+ 20) + Y (B0 s + B o) )
i=0
Lyt h] =y (ty + h) — (al (b0 + 11) + @y (6 + ) + @3 (12 + 20)
4 2

3
+ay (x, +2h) + At Z (.Bi(f)fmz‘ +.3§(f)fn+§) )’

i=0

L{y(t): h] =y (ta + 3h) - (a% (1 + 30) + @1 (1 + 1) + @ (ta + 30)

¢
G+ 20) + Y (B0 e + B o) )
i=0
(12)

LIy k] = y (1 + 2h) - (cxi (1 30) + s v )+ g (1 30)

3
b G+ 20) + Y (B0 e + B ) )
i=0
LIy ) = v (10 + 30) = (@ (14 $0) + 01 (a4 03 (12 + 30)
4 2

¢
(o + 20) + ) (B0 e + B o) )
i=0
LIy ] = vty + 20 = (g (10 + 30) + 1 o+ ) + 3 (10 + 30)
4 2

3
bz (i + 20+ (B0 s+ BeO ) )

i=0
Corollary 3

According to Ref. [3], the local truncation error of the new method assumes that y (¢) is sufficiently differentiable.By expanding
¥(t, + gh) and y(¢, + jh) about t, using a Taylor series, we obtain:

Ly [y(t)sh] = 22175 x 107,
Ly [y(t);h] = =32795x 107,
Ly [y(1);h] = ~1.3228 x 1077,
Ly [y(t,);h] = —3.3986 x 107,
Ls [y (t,);h] = —6.9487 x 10,
Ls [y(ta);h] = =1.2373 x 107,
Ly [y(1);h] = ~1.9840 x 107,
Ly [y(t,);h] = -2.8618 x 107*.

£l

e

Proof
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Using corollary 2, expand Eq. (12) and then simplify, we obtain:

Ly [y (t) ;4] = (-2.2175 X 1077) Corhy " (1) + O ('),
Ly [y (t);h] = (-3.2795 x 107°) Crh”y (1) + O ("),
L [y () ;] = (=1.3228 x 107°) Crh”y (1) + O ("),
Ly [y (ta) : 1] = (=3.3986 x 107) Corh”y 7 (1,) + O ("),
Ls [y (1) ; h] = (~6.9487 x 107°) Crh”y7 (1) + O ("),
Ly [y(t);h] = (-1.2373 x 107*) Corh”y " (1,) + O (h"").
Ly [y():h] = (~1.9840 x 107) Corh”y (2,) + O ("),
Ly [y (t2) s h] = (=2.8618 x 107*) Corh™y 7 (1,) + O (h').

3.2. Zero stability

A linear multistep method is said to be zero-stable for any well-behaved initial value problem if the roots of its characteristic equation
p (z) = 0 lie within or on the unit circle in the complex plane, with any roots on the unit circle having multiplicity at most one.
Hence:

1522 ;118124 ¢ 102528
'+ Z
35 105

p) =2 - + 2736647 — 26542087 + 178913287% + 7549742z + 150994944, (13)

Solving for z, we obtain z = 1, hence the method is zero stable.

3.3. Convergence

According to Ref. [1], a linear multistep method converges if it is consistent and zero-stable. Therefore, since the proposed method
is consistent and zero stable, hence it is convergent.

3.4. Consistency

According to Refs [3, 5], a linear multistep method is said to be consistent if it has an order of convergence greater than or equal
to zero. Thus, the proposed scheme is consistent.

3.5. Region of absolute stability

1117

The complex values form the region of absolute stability of the proposed method, as the solution of the test problem, y””’ = —A*y,
remains bounded as n — co.
The concept of A-stability, according to Ref. [3], is obtained by applying the test equation:

Y& = a0y, (14)
gives
Y = (@) Yi-1,2 = A, (15)
where u (z) is the amplification matrix of the form:
p@ = (@ @ —O) " (& - - 2y). (16)
The Eigenvalues, (0, O, ---, &) correspond to u (z), where & is called the stability function and the stability function is given by:
131 58956758528 -3468 98631948677 + 42210 644799840z°
—412492 6078968527°+2664153 2365042567 —13438340 52202118473
—44356479 0523921927%-95879531 6527104002+94389581 905920000

=-

+1368577 2441600002*—6636767 477760000z°

80 015040000z8—1739 75558400027 + 22504 039488000z°—205094 550528000z° )
+22368364 46208000022-47194790 952960000z+47194790 952960000
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a8 i i i | i i i i
a k K |

Figure 1. Showing an A-stable region of absolutely stability.

Using the boundary locus method on the new method, the stability polynomial is given as:

120 5 b g\ (601 g 466603 o)
526727577600 125411328 1881169920 23702740992000
( 37954117 1237 Wg)h12 +( 3137 4 37381 W7)h10

E(w)z(

"\ 8888527872000 T 156764160 722394880 373248000
(5849399 o 4123 o\ (367 o 6067 5\ g
3919104000 2239488 20736 403200

121157 , 1231 ,\ 4 1 5, 1 4\, 7., .8
_ [ IRV R .
+( 907200" " 10368w) T\ T v

a7

From the stability polynomial given by Eq. (17), the region of absolute stability is shown in Figure 1 as

4. Experimental problems and discussion

In this section, the accuracy and effectiveness of the proposed method (PM) are demonstrated through various higher-order initial
value problems. These include second, third, and fourth-order OSDEs derived from physical problems, as well as linear and nonlinear
systems, represented by equations (2), (3), and (4). All simulations were performed using the Maple 18 software package.

Error = Absolute(Exact — Approximate).

Problem 1: Consider the second-order oscillatory real-life problem: Simple Harmonic Motion. An object stretches a spring by 6
inches in equilibrium. Formulate the equation of motion and determine its general solution. Find the displacement of the object for
t > 0, given that it is initially displaced 18 inches above equilibrium and has an initial downward velocity of 3%. Using second law
of motion, gives

my” (t) +cy’ (t) + ky (t) = F. (18)
Setting ¢ = 0 andF = 0, get
k
my” (1) +ky=0=y" () + -y ®=0. (19)
The equation for the weight of the object is:
k t
kAl => = = —, 20
Y, 20)

substituting ¢ = 32%, Al = %ft into Eq. (18) to obtain:

O8]
\o}

== =64 (21)

I|=
Slo|
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Table 1. Numerical result for Problem 1 with that of OSHBM.

t PM  Ref. [20]
0.1 5.94e-10 3.35¢-07
0.2 82310 1.64e-06
03 2.94e-10 3.27e-06
04 4.05e-10 3.60e-06
0.5 1.77e-09 1.36e-06
0.6 2.06e-09 2.91e-06
0.7 7.85e-10 6.72e-06
0.8 9.56e-10 7.06e-06
0.9 3.0le-09 2.65¢-06
1.0 3.24e-09 4.61e-06

107°
10 E
—+—— Proposed Method
Ref. [23]
107 F E
@0
=]
o
108 4
ke AT
~
107 -+ / \4——/-**‘*/ E
~————
10*10 L i i L i | | '
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Figure 2. Comparison of the errors for Problem 1.

Now, Substitute Eq. (19) in Eq. (17), to get:
y' (@) + 64y = 0.

(22)

Expressing the displacement in feet, solving Eq. (20) subject to the initial downward velocity y (0) = %, ¥ (0)=-3and h =0.1:

77 3 7
Y (@) +64y()=0, y(0) = 7Y 0) =-3.
Exact solution is obtained as: 3 3
y() = —gsin (8 + Ecos (81) .

See Ref. [20].
Problem 2: Consider the highly non-stiff third order oscillatory problem

Y7 (@) =3cos(t), y(0)=1, y(0)=0, y"(0) =

with the exact solution:
y(t) = > = 3sin(t) + 3t + 1.

Source: See Refs. [21, 22].
Problem 3
Consider the highly stiff system of fourth order oscillatory problem:

- (8 +25t+ 302 + 1268 + f‘)
(1+23)

v o_

y

11

2,

.y(0) =0,y (0) = 1,y" (0) = 0,y (0) = -3,

(23)

(24)

(25)

(26)

27)
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Table 2. Absolute errors for Problem 2 with that of TDHBM and SSBM.
t PM Ref [21] Ref. [22]

01 O 1.97e-16 0

02 0 1.26e-15 0

03 0 4.06e-15 6.00e-19
04 0 944e-15 1.70e-18
05 0 1.82e-14  3.70e-18
06 0 3.12-14 6.80e-18
07 0 490e-14 1.13e-17
08 0 725-14 1.73e-17
09 0 1.02e-13  2.49e-17
1.0 0 1.39e-13  3.45e-17

Table 3. Absolute errors for Problem 3 with that of MHPLMM and THBM.
! PM Ref. [23]  Ref. [24]

0.003125 2.4879e-14 2.4874e-14 1.9902e-14
0.003125 7.9657e-13  7.9720e-13  6.3793e-13
0.009375 6.0544e-12  6.3116e-14  4.8524e-12
0.001250  2.5538e-11 4.4102e-12  2.0482e-11
0.015625 7.8013e-11 5.7680e-12  6.2610e-11
0.018750 1.9431e-10 1.4918e-11 1.5605e-10
0.021875 4.2041e-10 9.1931e-11 3.3786e-10
0.025000 8.2046e-10 2.7786e-10  6.5982e-10
0.028125 1.4800e-09 6.4684e-10 1.1910e-09
0.031250 2.5088e-09 1.2977e-09  2.0204e-09

with exact solution:
y(@® =y(1-2)exp(). (28)
Source: [23, 24].

5. Discussion of results

Table 1 presents the absolute errors for a second-order oscillatory real-life problem (Simple Harmonic Motion) using the proposed
method and the results obtained in Ref. [20]. The values of the exact and computed solutions show the displacement of an object
at different time intervals. The absolute errors (PM and Ref. [20]) provide insight into the accuracy of the numerical methods, with
PM values consistently smaller than those obtained in Ref. [20] for most time steps, indicating that the proposed method offers
higher precision. As time progresses, the errors fluctuate, as shown in Figure 2. However, both methods exhibit relatively small
discrepancies when compared to the exact solution, highlighting the overall effectiveness of the proposed method for this oscillatory
problem.

Table 2 presents the numerical results for a highly non-stift third-order oscillatory problem (see Problem 2), comparing the
proposed method with the existing methods in Refs. [21, 22]. The computed solutions align exactly with the exact solutions for
all time steps, demonstrating that the proposed method produces highly accurate results compared to the results obtained in Refs.
[21, 22]. The values for the reference methods show small discrepancies at each time step, indicating their precision, while the
proposed method exhibits no detectable errors, suggesting it is highly effective for this particular oscillatory problem. Although both
reference methods maintain low levels of error, the proposed method achieves optimal accuracy.

Table 3 presents the numerical results for a highly stiff fourth-order oscillatory problem, comparing the computed absolute
errors for the proposed method with those from the existing methods in Refs. [23, 24]. The computed solutions closely match the
exact solutions at each time step, with the proposed method showing very small absolute errors. The reference methods also show
small discrepancies, but the proposed method consistently produces lower errors across all time steps. These results suggest that
the proposed method performs well in handling highly stiff systems, demonstrating high precision and efficiency compared to the
methods from Refs. [23, 24].

6. Summary and conclusion

This research article investigates the application of a higher-order linear block method for solving oscillatory problems. The study
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emphasizes the importance of numerical methods in handling complex differential equations that arise in various scientific and en-
gineering fields. The linear block method is designed to offer an efficient approach for solving higher-order oscillatory differential
equations, where traditional methods may struggle in terms of computational efficiency and accuracy. The study explores the theo-
retical foundations of the proposed block method, highlighting its key features, such as analysing the stability and convergence of
the method. The accuracy of the proposed method was examined and compared with the existing methods, which demonstrate its
robustness and effectiveness. The findings show that the proposed linear block method significantly reduces computational time and
improves the accuracy of the solutions, making it a promising tool for solving complex oscillatory ordinary differential equations.
The proposed method represents a significant advancement in the numerical solution of higher-order oscillatory ordinary differential
equations. It offers notable improvements in terms of computational efficiency, accuracy, and stability compared to traditional meth-
ods. The method’s ability to handle oscillatory behaviour effectively makes it suitable for a wide range of applications in science and
engineering. Future research could explore further enhancements to the method and its application to more complex and real-world
problems, ensuring its continued relevance in numerical analysis.

Data availability

This research did not generate or analyze any datasets. As such, data sharing is not applicable.
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