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Abstract

In many areas of science and engineering, problems modeled by ordinary differential equations (ODEs) often lack analytical solutions, requiring
the use of numerical methods for approximation. The proposed method tackles the challenges of solving higher-order oscillatory differential
equations and introduces a new linear block technique for directly solving these equations. This method improves accuracy, reduces computational
effort, and simplifies coding complexity compared to previous approaches. A generalized algorithm is presented to derive the proposed method,
which enhances existing techniques for second-order and higher-order oscillatory problems. The basic properties of the method were numerically
analyzed, confirming its accuracy, stability, consistency, and convergence. The proposed method proves to be efficient and suitable for various test
problems, including real-life problems, which demonstrate its accuracy as compared to the existing methods.
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1. Introduction

In science and engineering, many problems modeled with ordinary differential equations do not have exact analytical solutions,
making it essential to rely on approximate solutions. These approximations are obtained using numerical methods, which lead to
the discretization of the solutions. Discretization represents the solution as values of the function at specific grid points, and these
values are connected by interpolating the function, as highlighted in studies such as Refs. [1, 2]. The resulting oscillatory differential
equations (OSDE) give rise to higher-order differential equations (HDE) expressed in the form:

y(n) = f
(
t, y, y′, y′′, . . . , y(n−1)

)
, y(m−1)(t0) = µm−1, m = 1, 2, . . . , (n − 1), (1)

are considered in this study, where µm−1, m = 1, 2, . . . , (n − 1) are constants. Many physical issues remain underexplored and
inadequately addressed by researchers. While some challenges in fields such as social sciences, technology, and science have
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received attention, numerous others are still awaiting thorough investigation. Oscillatory phenomena play a crucial role across these
areas, and differential equations are fundamental for modeling such behaviours, as discussed in Refs. [3, 4].

Historically, solving Eq. (1) involved reducing it to a system of first-order ODEs and applying numerical methods designed
for first-order systems, as outlined in Ref. [5]. However, this approach posed significant challenges, including high computational
demands, increased manual effort, coding complexity, and reduced accuracy due to error accumulation. Researchers, such as those in
Refs. [6–8], have extensively discussed these limitations. In response, direct methods for solving higher-order differential equations
were proposed in Refs. [7–12]. As a result, various efforts have been made to develop numerical schemes that solve Eq. (1) directly
using different approaches. Notably, Refs. [13–15] have proposed methods specifically designed to address second-order oscillatory
problems of this form:

y′′ = f (t, y, y′), y(t0) = µ0, y′(t1) = µ1. (2)

Likewise, methods have been introduced by Refs. [16–18] to address the solution of

y′′′ = f (t, y, y′, y′′), y(t0) = µ0, y′(t1) = µ1, y′′(t2) = µ2. (3)

Finally, certain researchers Refs. [5, 9, 12, 19] developed different methods to solve:

y′′′′ = f (t, y, y′, y′′, y′′′), y(t0) = µ0, y′(t1) = µ1, y′′(t2) = µ2, y′′′(t3) = µ3. (4)

Similarly, other methods used by different researchers include the following: Ref. [20] employed a one-eighth step hybrid block
method (OSHBM) to solve second-order initial value problems of ODEs. In Ref. [21], a third derivative hybrid block method
(TDHBM) was used to obtain approximate solutions for third-order initial value problems. Ref. [22] simulated third-order linear
problems using a single-step block method (SSBM), while Ref. [23] employed a monohybrid point linear multistep method (MH-
PLMM) to solve nth-order ODEs. Finally, Ref. [24] applied a two-step hybrid block method (THBM) to handle higher-order initial
value problems of ODEs.

The proposed method aim to improve the accuracy and effectiveness of the existing methods discussed in Refs. [4, 13–19, 25, 26]
while enhancing the partitioning for greater efficiency.

The article is organized as follows: In Section 2, we develop a generalized algorithm for the n-step linear block techniques. In
Section 3, we formulate the scheme for the proposed method and prove some corollaries. Section 4 presents numerical problems,
along with computational results and graphical representations, to demonstrate the accuracy of the proposed method. The final
section, Section 5, provides a discussion of the results, a summary, and concluding remarks.

2. Construction of linear block technique

The proposed linear block technique was derived based on the methods outlined in Refs. [3, 5, 12]. According to Ref. [12], the
linear block technique was first proposed by Adeyeye and Omar [27], for solving second order initial value problems. This study
adopts the linear block approach using

(
0
(

1
4

)
2
)

partition for the direct solution of Eq. (1).

2.1. Generalization algorithm for the k-step
The linear block technique was utilized in deriving a new method for the direct solution of Eq. (1), where Yn+k = (yn+a, yn+b, . . . , yn+k) and Y ( j)

n+k =(
y( j)

n+a, y( j)
n+b, . . . , y( j)

n+k

)
. The unknowns are obtained by considering the generalized algorithm:

yn+ξ =

3∑
j=0

(ξh) j

j!
y( j)

n +

k∑
j=0

(
ψiξ fn+ j

)
, ζ = a, b, . . . , k, (5)

its higher derivatives

yd
n+ξ =

4−(ς+1)∑
j=0

(ξh) j

j!
y( j+ς)

n + ς = 1(ξ=a, b, ..., k), 2(ξ=a, b, ..., k), 3(ξ=a, b, ..., k), (6)

with ψξ j = U−1G and Ωξ j = U−1D where

U =



1 1 1 · · · k
0 (ah)1

1!
(bh)1

1! · · ·
(kh)1

1!

0 (ah)2

2!
(bh)2

2! · · ·
(kh)2

2!
...

...
...

. . .
...

0 (ah)m

m!
(bh)m

m! · · ·
(kh)m

m!


, G =



(ξh)4

4!
(ξh)5

5!
(ξh)6

6!
...

(ξh)4+m

(4+m)!


, D =



(ξh)4−ς

(4−ς)!
(ξh)(5−ς)+a

((5−ς)+a)!
(ξh)(6−ς)+b

((6−ς)+b)!
...

(ξh)(m−ς)+k

((m−ς)+k)!


.
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So, to derive the new methods, the subsequent Corollary were proved.
Corollary 1
The k-multistep method associated with Eq. (5) uses only a block method. The corollary is extended to develop a higher-
order scheme based on the block algorithm. This can be confirmed using Eqs. (5) and (6) as a block at the specified points:(
0, 1

4 ,
1
2 ,

3
4 , 1, 5

4 ,
3
2 ,

7
4 , 2

)
.

Proof
Now simplifying (5) and (6) using the partitioned points, we have:

U =



1 1 1 1 1 1 1 1 1
0 h

8
h
4

3h
4

h
2

5h
4

3h
2

7h
4 2h

0 (h/4)2

2!
(h/2)2

2!
(3h/4)2

2!
h2

2!
(5h/4)2

2!
(3h/2)2

2!
(7h/4)2

2!
(2h)2

2!

0 (h/4)3

3!
(h/2)3

3!
(3h/4)3

3!
h3

3!
(5h/4)3

3!
(3h/2)3

3!
(7h/4)3

3!
(2h)3

3!

0 (h/4)4

4!
(h/2)4

4!
(3h/4)4

4!
h4

4!
(5h/4)4

4!
(3h/2)4

4!
(7h/4)4

4!
(2h)4

4!

0 (h/4)5

5!
(h/2)5

5!
(3h/4)5

5!
h5

5!
(5h/4)5

5!
(3h/2)5

5!
(7h/4)5

5!
(2h)5

5!

0 (h/4)6

6!
(h/2)6

6!
(3h/4)6

6!
h6

6!
(5h/4)6

6!
(3h/2)6

6!
(7h/4)6

6!
(2h)6

6!

0 (h/4)7

7!
(h/2)7

7!
(3h/4)7

7!
h7

7!
(5h/4)7

7!
(3h/2)7

7!
(7h/4)7

7!
(2h)7

7!

0 (h/4)8

8!
(h/2)8

8!
(3h/4)8

8!
h8

8!
(5h/4)8

8!
(3h/2)8

8!
(7h/4)8

8!
(2h)8

8!



, G =



(ξh)4

4!
(ξh)5

5!
(ξh)6

6!
(ξh)7

7!
(ξh)8

8!
(ξh)9

9!
(ξh)10

10!
(ξh)11

11!
(ξh)12

12!



, D =



(ξh)4−τ

(4−τ)!
(ξh)5−τ

(5−τ)!
(ξh)6−τ

(6−τ)!
(ξh)7−τ

(7−τ)!
(ξh)8−τ

(8−τ)!
(ξh)9−τ

(9−τ)!
(ξh)10−τ

(10−τ)!
(ξh)11−τ

(11−τ)!
(ξh)12−τ

(12−τ)!



.

Solving Eqs. (5) and (6), we have:

yξn, ξ = 0,
1
4
,

1
2
,

3
4
, 1,

5
4
,

3
2
,

7
4
, 2.

Substituting ξ = ξn + xh, the polynomial takes the form:

y(ξn + xh) =α1/4yn+1/4 + α1yn+1 + α3/2yn+3/2 + α2yn+2

+ h4(β0 fn + β1/4 fn+1/4 + β1/2 fn+1/2 + β3/4 fn+3/4 + β1 fn+1

+ β5/4 fn+5/4 + β3/2 fn+3/2 + β7/4 fn+7/4 + β2 fn+2
)
,

(7)

where

α1/4 =
64
35
−

416
35

ξ +
96
35
ξ2 −

64
105

ξ3,

α1 = −2 +
31
3
ξ − 10ξ2 +

8
3
ξ3,

α3/2 =
8
5
−

44
5
ξ +

52
5
ξ2 −

16
5
ξ3,

α2 = −
3
7
+

17
7
ξ −

22
7
ξ2 +

8
7
ξ3.
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β0 =
1

23224320
+

5200825781
7664025600

ξ +
14625071

7664025600
ξ2 −

4165541
348364800

ξ3 +
1
24
ξ4 −

761
8400

ξ5 +
29531
226800

ξ6

−
89
700

ξ7 −
4

105
ξ9 +

52
4725

ξ10 −
32

17325
ξ11 +

62
467775

ξ12,

β1/4 =
9139

14515200
−

4276401149
958003200

ξ +
1317793

38320128
ξ2 −

2883059
43545600

ξ3 +
4
15
ξ5 −

962
1575

ξ6 +
698
945

ξ7

+
460
1701

ξ9 −
1168
14175

ξ10 +
64

4455
ξ11 −

512
467775

ξ12,

β1/2 =
23773

5806080
+

24743560769
1916006400

ξ +
103393811

1916006400
ξ2 −

517
460800

ξ3 −
7
15
ξ5 +

69
50
ξ6 −

18353
9450

ξ7

+
1432
1701

ξ9 −
3824
14175

ξ10 +
1088
22275

ξ11 −
256

66825
ξ12,

β3/4 =
23069

2903040
−

1901180509
87091200

ξ +
85080211

958003200
ξ2 −

3925969
43545600

ξ3 +
25
45
ξ5 −

4006
2025

ξ6 +
1594
525

ξ7

+
284
189

ξ9 −
2384
4725

ξ10 +
64

675
ξ11 −

512
66825

ξ12,

β1 =
15953

1658880
+

17788306631
766402560

ξ +
7434899

109486080
ξ2 +

575849
34836480

ξ3 −
7

12
ξ5 +

691
360

ξ6 −
2914
945

ξ7

−
2864
1701

ξ9 +
1672
2835

ξ10 −
512

4455
ξ11 +

128
13365

ξ12,

β5/4 =
18617

2903040
−

15515774387
958003200

ξ +
51779383

958003200
ξ2 −

232117
4838400

ξ3 +
28
75
ξ5 −

94
75
ξ6 +

9782
4725

ξ7

+
10324
8505

ξ9 −
6256

14175
ξ10 +

1984
22275

ξ11 −
512

66825
ξ12,

β3/2 =
9491

4147200
+

13614927413
1916006400

ξ +
5442979

383201280
ξ2 +

79309
12441600

ξ3 −
7

45
ξ5 +

2143
4050

ξ6 −
187
210

ξ7

−
104
189

ξ9 +
976

4725
ξ10 −

64
1485

ξ11 +
256

66825
ξ12,

β7/4 =
151

580608
−

1740243377
958003200

ξ +
2431837

958003200
ξ2 −

162431
43545600

ξ3 +
4

105
ξ5 −

206
1575

ξ6 +
1054
4725

ξ7

+
244
1701

ξ9 −
112
2025

ξ10 +
1856

155925
ξ11 −

512
467775

ξ12,

β2 =
5

4644864
+

1568469677
7664025600

ξ −
468073

7664025600
ξ2 +

12683
38707200

ξ3 −
1

240
ξ5 +

121
8400

ξ6 −
67

2700
ξ7

−
4

243
ξ9 +

92
14175

ξ10 −
32

22275
ξ11 +

64
467775

ξ12.

The block algorithm (5) is expanded to yield
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yn+ 1
4
= yn +

1
4 hy′n +

1
2!

(
1
4 h

)2
y′′n +

1
3!

(
1
4 h

)3
y′′′n + h4

(
ψ011 fn + ψ012 fn+ 1

4
+ ψ013 fn+ 1

2
+ ψ014 fn+ 3

4
+ ψ015 fn+1

+ ψ016 fn+ 5
4
+ ψ017 fn+ 3

2
+ ψ018 fn+ 7

4
+ ψ019 fn+2

)
,

yn+ 1
2
= yn +

1
2 hy′n +

1
2!

(
1
2 h

)2
y′′n +

1
3!

(
1
2 h

)3
y′′′n + h4

(
ψ021 fn + ψ022 fn+ 1

4
+ ψ023 fn+ 1

2
+ ψ024 fn+ 3

4
+ ψ025 fn+1

+ ψ026 fn+ 5
4
+ ψ027 fn+ 3

2
+ ψ028 fn+ 7

4
+ ψ029 fn+2

)
,

yn+ 3
4
= yn +

3
4 hy′n +

1
2!

(
3
4 h

)2
y′′n +

1
3!

(
3
4 h

)3
y′′′n + h4

(
ψ031 fn + ψ032 fn+ 1

4
+ ψ033 fn+ 1

2
+ ψ034 fn+ 3

4
+ ψ035 fn+1

+ ψ036 fn+ 5
4
+ ψ037 fn+ 3

2
+ ψ038 fn+ 7

4
+ ψ039 fn+2

)
,

yn+1 = yn + hy′n +
1
2! h

2y′′n +
1
3! h

3y′′′n + h4
(
ψ041 fn + ψ042 fn+ 1

4
+ ψ043 fn+ 1

2
+ ψ044 fn+ 3

4
+ ψ045 fn+1

+ ψ046 fn+ 5
4
+ ψ047 fn+ 3

2
+ ψ048 fn+ 7

4
+ ψ049 fn+2

)
,

yn+ 5
4
= yn +

5
4 hy′n +

1
2!

(
5
4 h

)2
y′′n +

1
3!

(
5
4 h

)3
y′′′n + h4

(
ψ051 fn + ψ052 fn+ 1

4
+ ψ053 fn+ 1

2
+ ψ054 fn+ 3

4
+ ψ055 fn+1

+ ψ056 fn+ 5
4
+ ψ057 fn+ 3

2
+ ψ058 fn+ 7

4
+ ψ059 fn+2

)
,

yn+ 3
2
= yn +

3
2 hy′n +

1
2!

(
3
2 h

)2
y′′n +

1
3!

(
3
2 h

)3
y′′′n + h4

(
ψ061 fn + ψ062 fn+ 1

4
+ ψ063 fn+ 1

2
+ ψ064 fn+ 3

4
+ ψ065 fn+1

+ ψ066 fn+ 5
4
+ ψ067 fn+ 3

2
+ ψ068 fn+ 7

4
+ ψ069 fn+2

)
,

yn+ 7
4
= yn +

7
4 hy′n +

1
2!

(
7
4 h

)2
y′′n +

1
3!

(
7
4 h

)3
y′′′n + h4

(
ψ071 fn + ψ072 fn+ 1

4
+ ψ073 fn+ 1

2
+ ψ074 fn+ 3

4
+ ψ075 fn+1

+ ψ076 fn+ 5
4
+ ψ077 fn+ 3

2
+ ψ078 fn+ 7

4
+ ψ079 fn+2

)
,

yn+2 = yn + 2hy′n +
1
2! (2h)2y′′n +

1
3! (2h)3y′′′n + h4

(
ψ081 fn + ψ082 fn+ 1

4
+ ψ083 fn+ 1

2
+ ψ084 fn+ 3

4
+ ψ085 fn+1

+ ψ086 fn+ 5
4
+ ψ087 fn+ 3

2
+ ψ088 fn+ 7

4
+ ψ089 fn+2

)
.

(8)

Likewise, expanding Eq. (6), we obtain:

y′
n+ 1

4
= y′n +

1
4 hy′′n +

( 1
4 h)2

2! y′′′n

+ h3
(
Ω111 fn + Ω112 fn+ 1

4
+ Ω113 fn+ 1

2
+ Ω114 fn+ 3

4
+ Ω115 fn+1 + Ω116 fn+ 5

4
+ Ω117 fn+ 3

2
+ Ω118 fn+ 7

4
+ Ω119 fn+2

)
,

y′
n+ 1

2
= y′n +

1
2 hy′′n +

( 1
2 h)2

2! y′′′n

+ h3
(
Ω121 fn + Ω122 fn+ 1

4
+ Ω123 fn+ 1

2
+ Ω124 fn+ 3

4
+ Ω125 fn+1 + Ω126 fn+ 5

4
+ Ω127 fn+ 3

2
+ Ω128 fn+ 7

4
+ Ω129 fn+2

)
,

y′
n+ 3

4
= y′n +

3
4 hy′′n +

( 3
4 h)2

2! y′′′n

+ h3
(
Ω131 fn + Ω132 fn+ 1

4
+ Ω133 fn+ 1

2
+ Ω134 fn+ 3

4
+ Ω135 fn+1 + Ω136 fn+ 5

4
+ Ω137 fn+ 3

2
+ Ω138 fn+ 7

4
+ Ω139 fn+2

)
,

(9)

5
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y′n+1 = y′n + hy′′n +
h2

2! y′′′n

+ h3
(
Ω141 fn + Ω142 fn+ 1

4
+ Ω143 fn+ 1

2
+ Ω144 fn+ 3

4
+ Ω145 fn+1 + Ω146 fn+ 5

4
+ Ω147 fn+ 3

2
+ Ω148 fn+ 7

4
+ Ω149 fn+2

)
,

y′
n+ 5

4
= y′n +

5
4 hy′′n +

( 5
4 h)2

2! y′′′n

+ h3
(
Ω151 fn + Ω152 fn+ 1

4
+ Ω153 fn+ 1

2
+ Ω154 fn+ 3

4
+ Ω155 fn+1 + Ω156 fn+ 5

4
+ Ω157 fn+ 3

2
+ Ω158 fn+ 7

4
+ Ω159 fn+2

)
,

y′
n+ 3

2
= y′n +

3
2 hy′′n +

( 3
2 h)2

2! y′′′n

+ h3
(
Ω161 fn + Ω162 fn+ 1

4
+ Ω163 fn+ 1

2
+ Ω164 fn+ 3

4
+ Ω165 fn+1 + Ω166 fn+ 5

4
+ Ω167 fn+ 3

2
+ Ω168 fn+ 7

4
+ Ω169 fn+2

)
,

y′
n+ 7

4
= y′n +

7
4 hy′′n +

( 7
4 h)2

2! y′′′n

+ h3
(
Ω171 fn + Ω172 fn+ 1

4
+ Ω173 fn+ 1

2
+ Ω174 fn+ 3

4
+ Ω175 fn+1 + Ω176 fn+ 5

4
+ Ω177 fn+ 3

2
+ Ω178 fn+ 7

4
+ Ω179 fn+2

)
,

y′n+2 = y′n + 2hy′′n +
(2h)2

2! y′′′n

+ h3
(
Ω181 fn + Ω182 fn+ 1

4
+ Ω183 fn+ 1

2
+ Ω184 fn+ 3

4
+ Ω185 fn+1 + Ω186 fn+ 5

4
+ Ω187 fn+ 3

2
+ Ω188 fn+ 7

4
+ Ω189 fn+2

)
.

y′′
n+ 1

4
= y′′n +

1
4 hy′′′n + h2(Ω211 fn + Ω212 fn+ 1

4
+ Ω213 fn+ 1

2
+ Ω214 fn+ 3

4

+ Ω215 fn+1 + Ω216 fn+ 5
4
+ Ω217 fn+ 3

2
+ Ω218 fn+ 7

4
+ Ω219 fn+2

)
,

y′′
n+ 1

2
= y′′n +

1
2 hy′′′n + h2(Ω221 fn + Ω222 fn+ 1

4
+ Ω223 fn+ 1

2
+ Ω224 fn+ 3

4

+ Ω225 fn+1 + Ω226 fn+ 5
4
+ Ω227 fn+ 3

2
+ Ω228 fn+ 7

4
+ Ω229 fn+2

)
,

y′′
n+ 3

4
= y′′n +

3
4 hy′′′n + h2(Ω231 fn + Ω232 fn+ 1

4
+ Ω233 fn+ 1

2
+ Ω234 fn+ 3

4

+ Ω235 fn+1 + Ω236 fn+ 5
4
+ Ω237 fn+ 3

2
+ Ω238 fn+ 7

4
+ Ω239 fn+2

)
,

y′′n+1 = y′′n + hy′′′n + h2(Ω241 fn + Ω242 fn+ 1
4
+ Ω243 fn+ 1

2
+ Ω244 fn+ 3

4

+ Ω245 fn+1 + Ω246 fn+ 5
4
+ Ω247 fn+ 3

2
+ Ω248 fn+ 7

4
+ Ω249 fn+2

)
,

(10)

y′′
n+ 5

4
= y′′n +

5
4 hy′′′n + h2(Ω251 fn + Ω252 fn+ 1

4
+ Ω253 fn+ 1

2
+ Ω254 fn+ 3

4

+ Ω255 fn+1 + Ω256 fn+ 5
4
+ Ω257 fn+ 3

2
+ Ω258 fn+ 7

4
+ Ω259 fn+2

)
,

y′′
n+ 3

2
= y′′n +

3
2 hy′′′n + h2(Ω261 fn + Ω262 fn+ 1

4
+ Ω263 fn+ 1

2
+ Ω264 fn+ 3

4

+ Ω265 fn+1 + Ω266 fn+ 5
4
+ Ω267 fn+ 3

2
+ Ω268 fn+ 7

4
+ Ω269 fn+2

)
,

y′′
n+ 7

4
= y′′n +

7
4 hy′′′n + h2(Ω271 fn + Ω272 fn+ 1

4
+ Ω273 fn+ 1

2
+ Ω274 fn+ 3

4

+ Ω275 fn+1 + Ω276 fn+ 5
4
+ Ω277 fn+ 3

2
+ Ω278 fn+ 7

4
+ Ω279 fn+2

)
,

y′′n+2 = y′′n + 2hy′′′n + h2(Ω281 fn + Ω282 fn+ 1
4
+ Ω283 fn+ 1

2
+ Ω284 fn+ 3

4

+ Ω285 fn+1 + Ω286 fn+ 5
4
+ Ω287 fn+ 3

2
+ Ω288 fn+ 7

4
+ Ω289 fn+2

)
.

y′′′
n+ 1

4
= y′′′n + h

(
Ω311 fn + Ω312 fn+ 1

4
+ Ω313 fn+ 1

2
+ Ω314 fn+ 3

4
+ Ω315 fn+1

+Ω316 fn+ 5
4
+ Ω317 fn+ 3

2
+ Ω318 fn+ 7

4
+ Ω319 fn+2

)
,

6
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y′′′
n+ 1

2
= y′′′n + h

(
Ω321 fn + Ω322 fn+ 1

4
+ Ω323 fn+ 1

2
+ Ω324 fn+ 3

4
+ Ω325 fn+1

+Ω326 fn+ 5
4
+ Ω327 fn+ 3

2
+ Ω328 fn+ 7

4
+ Ω329 fn+2

)
,

y′′′
n+ 3

4
= y′′′n + h

(
Ω331 fn + Ω332 fn+ 1

4
+ Ω333 fn+ 1

2
+ Ω334 fn+ 3

4
+ Ω335 fn+1

+Ω336 fn+ 5
4
+ Ω337 fn+ 3

2
+ Ω338 fn+ 7

4
+ Ω339 fn+2

)
,

y′′′n+1 = y′′′n + h
(
Ω341 fn + Ω342 fn+ 1

4
+ Ω343 fn+ 1

2
+ Ω344 fn+ 3

4
+ Ω345 fn+1

+Ω346 fn+ 5
4
+ Ω347 fn+ 3

2
+ Ω348 fn+ 7

4
+ Ω349 fn+2

)
,

y′′′
n+ 5

4
= y′′′n + h

(
Ω351 fn + Ω352 fn+ 1

4
+ Ω353 fn+ 1

2
+ Ω354 fn+ 3

4
+ Ω355 fn+1

+Ω356 fn+ 5
4
+ Ω357 fn+ 3

2
+ Ω358 fn+ 7

4
+ Ω359 fn+2

)
,

y′′′
n+ 3

2
= y′′′n + h

(
Ω361 fn + Ω362 fn+ 1

4
+ Ω363 fn+ 1

2
+ Ω364 fn+ 3

4
+ Ω365 fn+1

+Ω366 fn+ 5
4
+ Ω367 fn+ 3

2
+ Ω368 fn+ 7

4
+ Ω369 fn+2

)
,

y′′′
n+ 7

4
= y′′′n + h

(
Ω371 fn + Ω372 fn+ 1

4
+ Ω373 fn+ 1

2
+ Ω374 fn+ 3

4
+ Ω375 fn+1

+Ω376 fn+ 5
4
+ Ω377 fn+ 3

2
+ Ω378 fn+ 7

4
+ Ω379 fn+2

)
,

y′′′n+2 = y′′′n + h
(
Ω381 fn + Ω382 fn+ 1

4
+ Ω318 fn+ 1

2
+ Ω384 fn+ 3

4
+ Ω385 fn+1

+Ω386 fn+ 5
4
+ Ω387 fn+ 3

2
+ Ω388 fn+ 7

4
+ Ω389 fn+2

)
.

(11)

Hence, we determine the unknown coefficients of ψ and Ω by solving ψξ j = U−1G and Ωξ jς = U−1D.

3. Numerical scheme of the proposed method

The sufficient and necessary conditions for analysis were basically scrutinized in this section.

3.1. Order and error constant

We consider the linear operator L
[
y (tn) ; h

]
, we use Corollaries 2 and 3 below, to determine the order and error constant of the

proposed method.
Corollary 2
According to Ref. [3], the linear operator, L

[
y (tn) ; h

]
associated with the local truncation error of the proposed method is C07h07y07 (tn)+

0
(
h11

)
.

Proof
As stated in Ref. [3], the linear difference operators corresponding to the proposed method are expressed as:

L
[
y(tn); h

]
= y

(
tn + 1

4 h
)
−

(
α 1

4

(
tn + 1

4 h
)
+ α1 (tn + h) + α 3

2

(
tn + 3

2 h
)

+ α2 (xn + 2h) + h4
ξ∑

i=0

(
βi(t) fn+i + βξ(t) fn+ξ

) )
,

L
[
y(tn); h

]
= y

(
tn + 1

2 h
)
−

(
α 1

4

(
tn + 1

4 h
)
+ α1 (tn + h) + α 3

2

(
tn + 3

2 h
)

+ α2 (xn + 2h) + h4
ξ∑

i=0

(
βi(t) fn+i + βξ(t) fn+ξ

) )
,

7
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L
[
y(tn); h

]
= y

(
tn + 3

4 h
)
−

(
α 1

4

(
tn + 1

4 h
)
+ α1 (tn + h) + α 3

2

(
tn + 3

2 h
)

+ α2 (xn + 2h) + h4
ξ∑

i=0

(
βi(t) fn+i + βξ(t) fn+ξ

) )
,

L
[
y(tn); h

]
= y (tn + h) −

(
α 1

4

(
tn + 1

4 h
)
+ α1 (tn + h) + α 3

2

(
tn + 3

2 h
)

+ α2 (xn + 2h) + h4
ξ∑

i=0

(
βi(t) fn+i + βξ(t) fn+ξ

) )
,

L
[
y(tn); h

]
= y

(
tn + 5

4 h
)
−

(
α 1

4

(
tn + 1

4 h
)
+ α1 (tn + h) + α 3

2

(
tn + 3

2 h
)

+ α2 (xn + 2h) + h4
ξ∑

i=0

(
βi(t) fn+i + βξ(t) fn+ξ

) )
,

L
[
y(tn); h

]
= y

(
tn + 3

2 h
)
−

(
α 1

4

(
tn + 1

4 h
)
+ α1 (tn + h) + α 3

2

(
tn + 3

2 h
)

+ α2 (xn + 2h) + h4
ξ∑

i=0

(
βi(t) fn+i + βξ(t) fn+ξ

) )
,

L
[
y(tn); h

]
= y

(
tn + 7

4 h
)
−

(
α 1

4

(
tn + 1

4 h
)
+ α1 (tn + h) + α 3

2

(
tn + 3

2 h
)

+ α2 (xn + 2h) + h4
ξ∑

i=0

(
βi(t) fn+i + βξ(t) fn+ξ

) )
,

L
[
y(tn); h

]
= y (tn + 2h) −

(
α 1

4

(
tn + 1

4 h
)
+ α1 (tn + h) + α 3

2

(
tn + 3

2 h
)

+ α2 (xn + 2h) + h4
ξ∑

i=0

(
βi(t) fn+i + βξ(t) fn+ξ

) )
.

(12)

Corollary 3
According to Ref. [3], the local truncation error of the new method assumes that y (t) is sufficiently differentiable.By expanding
y(tn + qh) and y(tn + jh) about tn using a Taylor series, we obtain:

L 1
4

[
y (tn) ; h

]
= −2.2175 × 10−7,

L 1
2

[
y (tn) ; h

]
= −3.2795 × 10−6,

L 3
4

[
y (tn) ; h

]
= −1.3228 × 10−5,

L1
[
y (tn) ; h

]
= −3.3986 × 10−5,

L 5
4

[
y (tn) ; h

]
= −6.9487 × 10−5,

L 3
2

[
y (tn) ; h

]
= −1.2373 × 10−4,

L 7
4

[
y (tn) ; h

]
= −1.9840 × 10−4,

L2
[
y (tn) ; h

]
= −2.8618 × 10−4.

Proof

8
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Using corollary 2, expand Eq. (12) and then simplify, we obtain:

L 1
4

[
y (tn) ; h

]
=

(
−2.2175 × 10−7

)
C07h07y(07) (tn) + O

(
h11

)
,

L 1
2

[
y (tn) ; h

]
=

(
−3.2795 × 10−6

)
C07h07y(07) (tn) + O

(
h11

)
,

L 3
4

[
y (tn) ; h

]
=

(
−1.3228 × 10−5

)
C07h07y(07) (tn) + O

(
h11

)
,

L1
[
y (tn) ; h

]
=

(
−3.3986 × 10−5

)
C07h07y(07) (tn) + O

(
h11

)
,

L 5
4

[
y (tn) ; h

]
=

(
−6.9487 × 10−5

)
C07h07y(07) (tn) + O

(
h11

)
,

L 3
2

[
y (tn) ; h

]
=

(
−1.2373 × 10−4

)
C07h07y(07) (tn) + O

(
h11

)
,

L 7
4

[
y (tn) ; h

]
=

(
−1.9840 × 10−4

)
C07h07y(07) (tn) + O

(
h11

)
,

L2
[
y (tn) ; h

]
=

(
−2.8618 × 10−4

)
C07h07y(07) (tn) + O

(
h11

)
.

3.2. Zero stability

A linear multistep method is said to be zero-stable for any well-behaved initial value problem if the roots of its characteristic equation
ρ (z) = 0 lie within or on the unit circle in the complex plane, with any roots on the unit circle having multiplicity at most one.
Hence:

ρ (z) = z8 −
1522

35
z7 +

118124
105

z6 −
102528

5
z5 + 273664z4 − 2654208z3 + 17891328z2 + 7549742z + 150994944. (13)

Solving for z, we obtain z = 1, hence the method is zero stable.

3.3. Convergence

According to Ref. [1], a linear multistep method converges if it is consistent and zero-stable. Therefore, since the proposed method
is consistent and zero stable, hence it is convergent.

3.4. Consistency

According to Refs [3, 5], a linear multistep method is said to be consistent if it has an order of convergence greater than or equal
to zero. Thus, the proposed scheme is consistent.

3.5. Region of absolute stability

The complex values form the region of absolute stability of the proposed method, as the solution of the test problem, y′′′′ = −λ4y,
remains bounded as n→ ∞.
The concept of A-stability, according to Ref. [3], is obtained by applying the test equation:

y(k) = λ(k)y, (14)

gives
Ym = µ (z) Ym−1, z = λh, (15)

where µ (z) is the amplification matrix of the form:

µ (z) =
(
ξ0 − zη(0)

− z4η(0)
)−1 (

ξ1 − zη(1)
− z4η(1)

)
. (16)

The Eigenvalues, (0, 0, · · · , ξk) correspond to µ (z), where ξk is called the stability function and the stability function is given by:

ζ = −

 131 589567585z8−3468 986319486z7 + 42210 644799840z6

−412492 607896852z5+2664153 236504256z4−13438340 522021184z3

−44356479 052392192z2−95879531 652710400z+94389581 905920000

 80 015040000z8−1739 755584000z7 + 22504 039488000z6−205094 550528000z5

+1368577 244160000z4−6636767 477760000z3

+22368364 462080000z²−47194790 952960000z+47194790 952960000


.

9



Jimoh et al. / African Scientific Reports 4 (2025) 275 10

Figure 1. Showing an A-stable region of absolutely stability.

Using the boundary locus method on the new method, the stability polynomial is given as:

h (w) =
(

121
526727577600

w7 +
1

125411328
w8

)
h16 +

(
−

601
1881169920

w8 −
4466603

23702740992000
w7

)
h14

+

(
−

37954117
8888527872000

w7 +
1237

156764160
w8

)
h12 +

(
−

3137
22394880

w8 −
37381

373248000
w7

)
h10

+

(
−

5849399
3919104000

w7 +
4123

2239488
w8

)
h8 +

(
−

367
20736

w8 −
6067

403200
w7

)
h6

+

(
−

121157
907200

w7 +
1231

10368
w7

)
h4 +

(
−

1
2

w7 −
1
2

w8
)

h2 − 2w7 + w8.

(17)

From the stability polynomial given by Eq. (17), the region of absolute stability is shown in Figure 1 as

4. Experimental problems and discussion

In this section, the accuracy and effectiveness of the proposed method (PM) are demonstrated through various higher-order initial
value problems. These include second, third, and fourth-order OSDEs derived from physical problems, as well as linear and nonlinear
systems, represented by equations (2), (3), and (4). All simulations were performed using the Maple 18 software package.

Error = Absolute(Exact – Approximate).

Problem 1: Consider the second-order oscillatory real-life problem: Simple Harmonic Motion. An object stretches a spring by 6
inches in equilibrium. Formulate the equation of motion and determine its general solution. Find the displacement of the object for
t > 0, given that it is initially displaced 18 inches above equilibrium and has an initial downward velocity of 3 f t

s . Using second law
of motion, gives

my′′ (t) + cy′ (t) + ky (t) = F. (18)

Setting c = 0 andF = 0, get

my′′ (t) + ky = 0⇒ y′′ (t) +
k
m

y (t) = 0. (19)

The equation for the weight of the object is:

mg = k∆l⇒
k
m
=

t
∆l
, (20)

substituting t = 32 f t
s2 ,∆l = 6

12 f t into Eq. (18) to obtain:

k
m
=

32
6

12

= 64. (21)

10
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Table 1. Numerical result for Problem 1 with that of OSHBM.
t PM Ref. [20]
0.1 5.94e-10 3.35e-07
0.2 8.23e-10 1.64e-06

0.3 2.94e-10 3.27e-06
0.4 4.05e-10 3.60e-06
0.5 1.77e-09 1.36e-06
0.6 2.06e-09 2.91e-06
0.7 7.85e-10 6.72e-06
0.8 9.56e-10 7.06e-06
0.9 3.01e-09 2.65e-06
1.0 3.24e-09 4.61e-06

Figure 2. Comparison of the errors for Problem 1.

Now, Substitute Eq. (19) in Eq. (17), to get:
y′′ (t) + 64y = 0. (22)

Expressing the displacement in feet, solving Eq. (20) subject to the initial downward velocity y (0) = 3
2 , y′ (0) = −3 and h = 0.1:

y′′ (t) + 64y (t) = 0, y (0) =
3
2
, y′ (0) = −3. (23)

Exact solution is obtained as:
y (t) = −

3
8

sin (8t) +
3
2

cos (8t) . (24)

See Ref. [20].
Problem 2: Consider the highly non-stiff third order oscillatory problem

y′′′ (t) = 3cos (t) , y (0) = 1, y′ (0) = 0, y′′ (0) = 2, (25)

with the exact solution:
y (t) = t2 − 3sin (t) + 3t + 1. (26)

Source: See Refs. [21, 22].
Problem 3

Consider the highly stiff system of fourth order oscillatory problem:

yiv =
−

(
8 + 25t + 30t2 + 12t3 + t4

)
(
1 + t2) , y (0) = 0, y′ (0) = 1, y′′ (0) = 0, y′′′ (0) = −3, (27)

11
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Table 2. Absolute errors for Problem 2 with that of TDHBM and SSBM.
t PM Ref. [21] Ref. [22]
0.1 0 1.97e-16 0
0.2 0 1.26e-15 0
0.3 0 4.06e-15 6.00e-19
0.4 0 9.44e-15 1.70e-18
0.5 0 1.82e-14 3.70e-18
0.6 0 3.12e-14 6.80e-18
0.7 0 4.90e-14 1.13e-17
0.8 0 7.25e-14 1.73e-17
0.9 0 1.02e-13 2.49e-17
1.0 0 1.39e-13 3.45e-17

Table 3. Absolute errors for Problem 3 with that of MHPLMM and THBM.
t PM Ref. [23] Ref. [24]
0.003125 2.4879e-14 2.4874e-14 1.9902e-14
0.003125 7.9657e-13 7.9720e-13 6.3793e-13
0.009375 6.0544e-12 6.3116e-14 4.8524e-12
0.001250 2.5538e-11 4.4102e-12 2.0482e-11
0.015625 7.8013e-11 5.7680e-12 6.2610e-11
0.018750 1.9431e-10 1.4918e-11 1.5605e-10
0.021875 4.2041e-10 9.1931e-11 3.3786e-10
0.025000 8.2046e-10 2.7786e-10 6.5982e-10
0.028125 1.4800e-09 6.4684e-10 1.1910e-09
0.031250 2.5088e-09 1.2977e-09 2.0204e-09

with exact solution:
y (t) = y

(
1 − t2

)
exp( t). (28)

Source: [23, 24].

5. Discussion of results

Table 1 presents the absolute errors for a second-order oscillatory real-life problem (Simple Harmonic Motion) using the proposed
method and the results obtained in Ref. [20]. The values of the exact and computed solutions show the displacement of an object
at different time intervals. The absolute errors (PM and Ref. [20]) provide insight into the accuracy of the numerical methods, with
PM values consistently smaller than those obtained in Ref. [20] for most time steps, indicating that the proposed method offers
higher precision. As time progresses, the errors fluctuate, as shown in Figure 2. However, both methods exhibit relatively small
discrepancies when compared to the exact solution, highlighting the overall effectiveness of the proposed method for this oscillatory
problem.

Table 2 presents the numerical results for a highly non-stiff third-order oscillatory problem (see Problem 2), comparing the
proposed method with the existing methods in Refs. [21, 22]. The computed solutions align exactly with the exact solutions for
all time steps, demonstrating that the proposed method produces highly accurate results compared to the results obtained in Refs.
[21, 22]. The values for the reference methods show small discrepancies at each time step, indicating their precision, while the
proposed method exhibits no detectable errors, suggesting it is highly effective for this particular oscillatory problem. Although both
reference methods maintain low levels of error, the proposed method achieves optimal accuracy.

Table 3 presents the numerical results for a highly stiff fourth-order oscillatory problem, comparing the computed absolute
errors for the proposed method with those from the existing methods in Refs. [23, 24]. The computed solutions closely match the
exact solutions at each time step, with the proposed method showing very small absolute errors. The reference methods also show
small discrepancies, but the proposed method consistently produces lower errors across all time steps. These results suggest that
the proposed method performs well in handling highly stiff systems, demonstrating high precision and efficiency compared to the
methods from Refs. [23, 24].

6. Summary and conclusion

This research article investigates the application of a higher-order linear block method for solving oscillatory problems. The study

12
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emphasizes the importance of numerical methods in handling complex differential equations that arise in various scientific and en-
gineering fields. The linear block method is designed to offer an efficient approach for solving higher-order oscillatory differential
equations, where traditional methods may struggle in terms of computational efficiency and accuracy. The study explores the theo-
retical foundations of the proposed block method, highlighting its key features, such as analysing the stability and convergence of
the method. The accuracy of the proposed method was examined and compared with the existing methods, which demonstrate its
robustness and effectiveness. The findings show that the proposed linear block method significantly reduces computational time and
improves the accuracy of the solutions, making it a promising tool for solving complex oscillatory ordinary differential equations.
The proposed method represents a significant advancement in the numerical solution of higher-order oscillatory ordinary differential
equations. It offers notable improvements in terms of computational efficiency, accuracy, and stability compared to traditional meth-
ods. The method’s ability to handle oscillatory behaviour effectively makes it suitable for a wide range of applications in science and
engineering. Future research could explore further enhancements to the method and its application to more complex and real-world
problems, ensuring its continued relevance in numerical analysis.

Data availability

This research did not generate or analyze any datasets. As such, data sharing is not applicable.
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