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Abstract

In this paper, we study a modified hybrid inertial algorithm of generalized f - projection for approximating maximal monotone
operators and solutions of generalized mixed equilibrium problems in Banach spaces. Our results generalize and improve many
recent announced results in the literature.
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1. Introduction

An inertial algorithms is a method of speeding up the convergence of the sequence of an iterative algorithm which was
first introduced and studied by Polyak [1]. An inertial-types algorithm is a two-step iterative techniques in which the
next iteration is defined by making use of the previous two iterates. Consequently, many researches involving inertial-
type algorithm are now taking place (see, e.g [2, 3, 4, 5] and the references therein).

Let C be a nonempty closed convex subset of a real Banach space E with ∥.∥ and E∗ as the norm and dual space of E
respectively. Let Ψ : C × C −→ R be a bifunctions, where R is the set of real numbers, Φ : C −→ E∗ is a nonlinear
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continuous monotone mapping and φ : C −→ R be a convex and lower semi continuous function. The generalized
mixed equilibrium problem [6] is to find x ∈ C such that:

Ψ(x, y) + ⟨Φx, y − x⟩ + φ(y) − φ(x) ≥ 0,∀y ∈ C.

The set of solutions of generalized mixed equilibrium problem is denoted by

GMEP(Ψ,Φ, φ) = {x ∈ C : Ψ(x, y) + ⟨Φx, y − x⟩ + φ(y) − φ(x) ≥ 0,∀y ∈ C}.

The generalised mixed equilibrium problem has been used as a tools and unified approach for investigating and
solving a large number of problems arising from nonlinear analysis, optimization, economics, mathematical physics,
game theory and variational inequality problem and so forth ( see [7, 8] and the references therein). Recently, the
equilibrium problem has been extensively investigated based on hybrid algorithms, in particular, the monotone hybrid
algorithm; see [9, 10, 11] and the references therein.

Let S be a maximal monotone operator from E to E∗. The problem of a zero point of a maximal monotone operator
is to find a point ω ∈ E such that

0 ∈ S (ω). (1)

We denote S −10 as the set of all point ω ∈ E such that 0 ∈ S (ω). This problem play an important role in analysis,
optimization and other related field of research.

Martinet [12] was the first to introduced the proximal point algorithm (PPA) which is well known as the classical
techniques for approximating (1). With regards to this important, a number of researches have been working on
(PPA) techniques ( see for example [12, 13, 14] and the references therein). Solodov and Sviater [13] studied a
modified proximal point algorithm and projection in Hilbert space. In 2003, Kohsake and Takahashi [15] proposed
and established strong convergence results for maximal monotone operators in Banach space. Alber [16, 17] proposed
and proved the generalized projections ΠC : E∗ −→ C and ΠE : E −→ C in uniformly smooth and uniformly convex
Banach space. In 2005 Li [18] proved strong convergence theorem for generalized projection in a reflexive Banach
space. In 2010 Li et al. [19] studied the generalized f - projection operator and established strong convergence results
for relatively nonexpansive mappings in Banach spaces.

In 2012, Siwaporn and Kumam [20] considered the following hybrid iterative algorithm of generalized f - projection
operator for approximating the set of two countable families of weak relatively nonexpansive mappings and the set of
solutions of generalized Kly Fan inequalities in a uniformly smooth and uniformly convex Banach space:

C1 = C,
un = J−1(αnJxn + (1 − αn)JTnxn),
vn = J−1(βnJxn + (1 − βn)JS nun),
zn = S Γm

rm,n S Γm−1
rm−1,n ...S

Γ2
r2,n S Γ1

r1,n un,
Cn+1 = {z ∈ C : G(z, Jzn) ≤ G(z, Jvn) ≤ G(z, Jun) ≤ G(z, Jxn)
xn+1 = Π

f
Cn+1

x0,∀n ≥ 1.

They proved that the sequence {xn} converges strongly to q ∈ Ω, where q = Π f
Ω

x0
Chidume et al. [21] proved a strong convergence theorem for generalized ϕ- strongly monotone maps in uniformly
convex and uniformly smooth Banach spaces. Also, in 2020, Chidume et al. [5] studied the following hybrid inertial
algorithm for approximating a point in the set of zero of a maximal monotone and a common fixed point of a countable
family of relatively nonexpansive mapping in Banach spaces:

C0 = E,
wn = vn + γn(vn − vn−1),
un = J−1((1 − β)Jwn + βT Jrn wn),
zn = J−1((1 − α)Jwn + αS un)),
Cn+1 = {z ∈ C : ϕ(z, zn) ≤ ϕ(z, Jwn),
xn+1 = Π

f
Cn+1

x0,∀n ≥ 0.
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They proved that the sequence {xn} converges strongly to ΠΓx0.
Recently, Hammad et al. [22] studied a hybrid algorithm for approximating zero of the sum of maximal monotone
operators and common fixed point problem for finite family of relatively quasi- nonexpansive mappings in Banach
space.
Very recently, Siwaporn Soewan [23] introduced and studied the following new hybrid iterative algorithm for approx-
imating maximal monotone operators by considering the notion of generalized f - projection in Banach spaces:

x1 ∈ C, C1 = C,
zn = J−1(γnJxn + (1 − γn)JJrn xn),
Cn+1 = {z ∈ C : G(z, Jzn) ≤ G(z, Jxn),
xn+1 = Π

f
Cn+1

x1,∀n ≥ 1.

The author proved that the sequence {xn} converges strongly to Π f
T−10x1.

Motivated inspired by the results of Chidume et al. [5], Siwaporn and Kumam [20], and Siwaporn Saewan [23]
mentioned above, we study a modified hybrid inertial algorithm of generalized f - for approximating a zero point of a
maximal monotone operators and solutions of generalized mixed equilibrium problems in Banach space. Our results
extends and improves the result of Siwaporn Saewan [23] and many results in the literature.

2. Preliminaries

Let E be a real Banach space with norm ∥ . ∥, E∗ be the dual space of E, let C be a nonempty closed convex subset of
E. The normalized duality mapping on E is a mapping J : E → 2E∗ defined by

J(x) = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2},∀x ∈ E,

where ⟨x, x∗⟩ is the pairing between element of E and that of E∗.

Let D := {x ∈ E : ∥x∥ = 1} be the unit sphere of E. A Banach space s E is said to be smooth if the lim
t→0

∥ x + ty ∥ − ∥ x ∥
t

exists for all x, y ∈ D. It is also said to be uniformly smooth if the limit exists uniformly in x, y ∈ D, E said to be

strictly convex if
∥ x + y ∥

2
< 1 for all x, y ∈ E with ∥x∥ = ∥y∥ = 1 and x , y and E is said to be uniformly convex if

for each ε ∈ (0, 2], there exists δ > 0 such that
∥ x + y ∥

2
≤ 1 − δ for all x, y ∈ E with ∥x∥ = ∥y∥ = 1 and ∥x − y∥ ≥ ε.

The modulus of convexity of E is the function δ : [0, 2] −→ [0, 1] defined by

δ(ε) = in f
{
1 − ∥

x + y
2
∥ : x, y ∈ E, ∥x∥ = ∥y∥ = 1, ∥x − y∥ ≥ ε

}
Let E be a smooth Banach space. Define a map ϕ : E × E −→ R by

ϕ(y, x) = ∥y∥2 − 2⟨y, Jx⟩ + ∥x∥2,∀x, y ∈ E. (2)

It follows from (2), that

(∥y∥ − ∥x∥)2 ≤ ϕ(x, y) ≤ (∥y∥ + ∥x∥)2, ∀x, y ∈ E (3)

ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x − z, Jz − Jy⟩, ∀x, y, z ∈ E (4)

and

ϕ(x, y) ≤ ∥x∥∥Jx − Jy∥ + ∥y∥∥x − y∥, ∀x, y, ∈ E (5)
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Following Alber [16, 24], the generalised projection ΠC from E onto C is a map that assigns to an arbitrary point
x ∈ E the minimum point of the functional ϕ(y, x); that is, ΠC(x) = x∗, where x∗ is the solution to the minimization
problem

ϕ(x∗, x) = min
y∈C
ϕ(y, x).

Existence and the uniqueness of the operator ΠC follows from the properties of the functional ϕ(y, x) and strict mono-
tonicity of the mapping J. If E is a real Hilbert space H, then ϕ(y, x) = ∥y − x∥2 and ΠC become the metric projection
PC of H onto C (see, for example [5, 25, 26] ).

Remark 2.1. Let E be a Banach space. We recall from the following [23] that:

i. If E is an arbitrary Banach space, then J is monotone and bounded;
ii. If E is a smooth, then J is single valued and semi continuous;
iii. If E is a strictly convex, then J is strictly monotone;
iv. If E is reflexive, smooth and strictly convex, then the normalized duality mapping J is single valued, one-to-one
and onto;
v. If E is uniformly smooth, then E is smooth and reflexive;
vi. E is uniformly smooth if and only if E∗ is uniformly convex;
vii. If E is uniformly smooth, then J is uniformly norm-to-norm continuous on bounded subset of E.

Remark 2.2. If E is a reflexive, smooth and strictly convex Banach space, the for x, y ∈ E, we have that ϕ(x, y) = 0
if and only if x = y. It is sufficient to show that for ϕ(x, y) = 0, we get that x = y. It follows from (ii) above that
∥ x ∥2=∥ y ∥2 . Which implies that ⟨x, Jy⟩ = ∥x∥2 = ∥Jy∥2. Now by the definition of J, we conclude that Jx = Jy. Thus,
this implies that x = y ( see for example [23, 27] and therein)

Definition 2.3. i) Let E be a strictly convex, smooth and reflexive Banach space, let S be a set valued from E to
E∗ denoted by S ⊂ E × E∗ and the graph G(S ) = {(x, y) : y ∈ S x}. We denote D(S ) = {x ∈ E : S x , ∅} and
R(S ) = ∪{S x : x ∈ D(S )} as the Domain and Range of an operator S respectively.

ii) An operator S ⊂ E × E∗ is said to be monotone if ⟨x − y, x∗ − y∗⟩ ≥ 0 for all (x, x∗), (y, y∗) ∈ S .

iii) A monotone operator S is said to be maximal if its graph G(S ) is not properly contained in the graph of any other
monotone operator. Recall that if S is a maximal monotone operator, then it follows that S −10 = {x ∈ D(S ) : 0 ∈ S x}
which is closed and convex. It is well known that S is a maximal monotone if and only if R(J + rS ) = E∗ for all r > 0.
The resolvent of S is denoted by Jr = (J + rS )−1J for all r > 0, where Jr is a single valued mapping from E to D(S ).
Furthermore S −1(0) = F(Jr) for all r > 0, where F(Jr) denote the set of all fixed point of Jr. The Yosida approximation
of S is defined by S r = (J − JJr)/r, for all r > 0. We can also recall that S r x ∈ S (Jr x) for all r > 0 and x ∈ E.

iv) An operator S is said to be closed if for any sequence {xn} ⊂ C, with xn −→ x and S xn −→ y then y = S x.

For solving the generalized mixed equilibrium problem GMEP(Ψ,Φ, φ)[28, 29], we assume that the nonlinear map-
ping Φ : C −→ E∗ is continuous and monotone, the function φ : C −→ R is convex and lower semi-continuous and
the bifunction, Ψ : C ×C −→ R satisfies the following conditions:
(L1) Ψ(x, x) = 0, ∀x ∈ C;
(L2) Ψ(y, x) + Ψ(x, y) ≤ 0 ∀x, y ∈ C;
(L3) Ψ(x, y) ≥ lim supλ↓0Ψ(λz + (1 − λ)x, y),∀x, y, z ∈ C;
(L4) y 7→ Ψ(x, y) is convex and weakly lower semi-continuous, ∀x ∈ C.

The following lemmmas play important roles in this paper.

Lemma 2.4. (see [30]) Let E be a smooth and uniformly convex Banach space and let {xn} and {yn} be sequences in
E such that either {xn} or {yn} is bounded. If lim

n→∞
ϕ(xn, yn) = 0, then lim

n→∞
∥ xn − yn ∥= 0.
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Remark 2.5. If {xn} and {yn} are bounded, then by considering (5) it is obvious that the converse of Lemma 2.4 is
also true.

Let G : C × E∗ −→ R ∪ {+∞} be a functional defined by:

G(y, ρ) =∥ y ∥2 −2⟨y, ρ⟩ + ∥ρ ∥2 +2σ f (y), (6)

where y ∈ C, ρ ∈ E∗, σ is positive number and f : C −→ R ∪ {+∞} is proper, convex and lower semi continuous. It
follows from the definitions of G and f that the following properties hold:
i) G(y, ρ) is convex and continuous with respect to ρ when y is fixed;
ii) G(y, ρ) is convex and lower semicontinuous with respect to y when ρ is fixed.

Let C be a nonempty closed convex subset of a real Banach space E. The generalized f - projection Π f
C : E∗ −→ 2C is

an operator defined by

Π
f
Cρ = {v ∈ C : G(v, ρ) = inf

y∈C
G(y, ρ),∀ρ ∈ E∗}.

Lemma 2.6. (see [31]) Let E be a reflexive Banach space with its dual E∗ and C be a nonempty closed convex subset
of E. The following statements hold:
i) Π f

cρ is nonempty closed convex subset of C for all ρ ∈ E∗;
ii) If E is smooth, then for all ρ ∈ E∗, x ∈ Π f

Cρ if and only if

⟨x − y, ρ − Jx⟩ + σ f (y) − σ f (x) ≥ 0,∀y ∈ C;

iii) If E is strictly convex and f : C −→ R ∪ {+∞} is positive homogeneous (i.e., f (λx) = λ f (x) for all λ > 0 such that
λx ∈ C where x ∈ C ), then Π f

C is single valued mapping.

Lemma 2.7. (see [32]) Let C be nonempty closed convex subset of a reflexive Banach space E and E∗ be the dual
space of E. If E is strictly convex, then Π f

Cρ is single valued.

It is well known that if E is a smooth Banach space, then J is single valued mapping. Therefore, there exists a unique
element ρ ∈ E∗ such that ρ = Jx for x ∈ E. Now, by substituting ρ = Jx in (6), we obtain

G(y, Jx) =∥ y ∥2 −2⟨y, Jx⟩ + ∥x∥2 + 2σ f (y). (7)

It follows from the definition of G that

G(y, Jx) = G(y, Jz) + ϕ(z, x) + 2⟨y − z, Jz − Jx⟩,∀x, y, z ∈ E. (8)

Furthermore, we consider the notion of the second generalized f - projection in Banach spaces,

Definition 2.8. (see [19]) Let C be a nonempty closed convex subset of a real smooth Banach space E. Then, an
operator Π f

C : E −→ 2C is said to be generalized f - projection if

Π
f
C x = {v ∈ C : G(v, Jx) = inf

y∈C
G(y, Jx),∀x ∈ E}.

Lemma 2.9. (see [33]) Let E be a Banach space and f : E −→ R ∪ {+∞} be a lower semicountinuous convex
functional. Then there exists q∗ ∈ E∗ and γ ∈ R such

f (x) ≥ ⟨x, q∗⟩ + γ,∀x ∈ E.

Lemma 2.10. (see [19]) Let C be a nonempty closed convex subset of a reflexive smooth Banach space E. Then, the
following statements hold:
i) Π f

C x is nonempty closed convex subset of C for all x ∈ E;
ii) for all x ∈ E, x̂ ∈ Π f

C if and only if

⟨x̂ − y, Jx − Jx̂⟩ + σ f (y) − σ f (x̂) ≥ 0,∀y ∈ C;

iii) If E is strictly convex, then Π f
C is single valued mapping.
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Lemma 2.11. (see [19]) Let C be a nonempty closed convex subset of a reflexive smooth Banach space E. and x̂ ∈ Π f
C

for all x ∈ E. Then

ϕ(y, x̂) +G(x̂, Jx) ≤ G(y, Jx),∀y ∈ C.

Lemma 2.12. (see [19]) Let E be a Banach space and f : E −→ R ∪ {+∞} be a proper, convex and lower semi-
countinuous mapping with domain D( f ). If {xn} ⊂ D( f ) such that xn ⇀ x̂ ∈ D( f ) and G(xn, Jy) −→ G(x̂, Jy) ( as
n→ ∞), then ∥ xn ∥−→∥ x̂ ∥ ( as n→ ∞).

Lemma 2.13. (see [15]) Let C be a nonempty closed convex subset of strictly convex, smooth and reflexive Banach
space E, let S ⊂ E × E∗ be a monotone operator satisfying D(S ) ⊂ C ⊂ J−1(∩r>0R(J + rS )). Let Jr and S r, for all
r > 0 be the resolvent and the Yosida approximation of S , respectively. The following statements hold:
i) ϕ(v, Jr x) + ϕ(Jr x, x) ≤ ϕ(v, x),∀x ∈ C, v ∈ S −10;
ii) (Jr x, S r x) ∈ S ,∀x ∈ C, where (x, x∗) ∈ S denotes the value of x∗ at x(x∗ ∈ S x) iii) F(Jr) = S −10.

Lemma 2.14. (see [23]) Let E be a strictly convex, smooth and reflexive Banach space, S ⊂ E × E∗ be a monotone
operator with S −10 , ∅, and for each r > 0, Jr = (J + rS )−1J. Then

G(q, JJr x) + ϕ(Jr x, x) ≤ G(q, Jx),∀x ∈ E, q ∈ S −10.

Lemma 2.15. (see [7, 26]) Let E be a smooth, strictly convex and reflexive Banach space, and C be a nonempty
closed convex subset of E. Let Ψ : C ×C −→ R be a bifunction satisfying the conditions (L1) − (L4). Let r > 0 be any
given number and x ∈ E be any given point. Then, there exists z ∈ C such that

Ψ(z, y) +
1
r
⟨y − z, Jz − Jx⟩ ≥ 0,∀y ∈ C.

Replacing x with J−1(Jx − rΦx), where B is a monotone mapping from C into E∗, then there exists z ∈ C such that

Ψ(z, y) + ⟨y − z,Φz⟩ +
1
r
⟨y − z, Jz − Jx⟩ ≥ 0.∀y ∈ C.

Lemma 2.16. (see [26, 29, 34]) Let E be a uniformly smooth, strictly convex and reflexive Banach space, and C be
a nonempty closed convex subset of E. Let Φ : C −→ E∗ be a continuous and monotone mapping, Ψ : C × C −→ R
be a bifunction satisfying the conditions (L1) − (L4) and φ : C −→ R be a proper convex and lower semi-continuous
function. Let r > 0 be any given number and x ∈ E be any given point, define a mapping Tr : E −→ C by

Tr(x) = {z ∈ C : Ψ(z, y) + φ(y) − φ(z) + ⟨y − z,Φz⟩ +
1
r
⟨y − z, Jz − Jx⟩ ≥ 0,∀y ∈ C},∀x ∈ E,

for all x ∈ C. The mapping Tr has the following properties:
(a) Tr is single-valued;
(b) Tr is a firmly nonexpansive - type mapping, for all x ∈ E, y ∈ C

⟨Tr x − Try, JTr x − JTry⟩ ≤ ⟨Tr x − Try, Jx − JTy⟩

(c) F(Tr) = GMEP(Ψ,Φ, φ);
(d) GMEP(Ψ,Φ, φ) is a closed convex set of C.
(e) ϕ(p,Tr x) + ϕ(Tr x, x) ≤ ϕ(p, x), ∀p ∈ F(Tr), x ∈ E.
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3. Strong Convergence Theorem

Theorem 3.1. Let E be a uniformly smooth and uniformly convex real Banach space and C be a nonempty closed
and convex subset of E. Let Ψ : C × C −→ R be a bi function which satisfies conditions (L1) − (L4), Φ : C −→ E∗

be continuous and monotone, and φ : C −→ R be a lower semi-continuous and convex function. Let f : E −→ R
be a convex and lower semicontinuous mapping with C ⊂ int(D( f )), where D( f ) is the domain of f . Let S ⊂ E × E∗

be a maximal monotone operator satisfying D(S ) ⊂ C and Jrn = (J + rnS )−1J, for all rn > 0. Assume that Ω :=
GMEP(Ψ,Φ, φ) ∩ S −10 , ∅. Let {xn} be a sequence generated by

x0 ∈ C0 = E;
wn = xn + αn(xn − xn−1);
un = J−1(βnJwn + (1 − βn)JJrn wn);
zn ∈ C such that Ψ(zn, y) + ⟨Φzn, y − zn⟩ + φ(y) − φ(zn)

+
1
rn
⟨y − zn, Jzn − Jun⟩ ≥ 0,∀y ∈ C,

Cn+1 = {z ∈ Cn : G(z, Jzn) ≤ G(z, Jwn)};
xn+1 = Π

f
Cn+1

x0, ∀n ∈ R ∪ {0}

(9)

where αn ⊂ (0, 1), βn is a sequence in [0, 1], and {rn} ⊂ [a,∞) for some a > 0. Assume that lim inf
n→∞

(1 − βn) > 0 and

lim
n→∞

rn = ∞. The sequence {xn} converges strongly to Π f
Ω

x0, where Π f
Ω

is the generalized f - projection of E onto Ω.

Proof.
Let two functions Γ : C ×C −→ R and Tr : E −→ C be defined by

Γ(x, y) = Ψ(x, y) + ⟨Φx, y − x⟩ + φ(y) − φ(x), ∀x, y ∈ C

and

Tr(x) = {u ∈ C : Γ(u, y) +
1
rn
⟨y − u, Ju − Jx⟩ ≥ 0, ∀y ∈ C} ∀x ∈ E,

respectively. Then, the function Γ satisfies conditions (L1) − (L4) and Tr has the properties (a) − (e) of Lemma 2.16
(see [26, 34, 29]). Therefore iterative sequence (9) can be rewritten as

x0 ∈ C0 = E;
wn = xn + αn(xn − xn−1);
un = J−1(βnJwn + (1 − βn)JJrn wn);

zn ∈ C such that Γ(zn, y) +
1
rn
⟨y − zn, Jzn − Jun⟩ ≥ 0,∀y ∈ C,

Cn+1 = {z ∈ Cn : G(z, Jzn) ≤ G(z, Jwn)};
xn+1 = Π

f
Cn+1

x0, ∀n ∈ R ∪ {0}

(10)

We first show that Ω ⊂ Cn,∀n ≥ 0 and {xn} is well defined. Assume that Cn is closed and convex for all n ∈ N. Now
by the definition of Cn+1, for any z ∈ Cn, we have

G(z, Jzn) −G(z, Jwn) ≤ 0.

which gives that

∥ z ∥2 −2⟨z, Jzn⟩ + ∥zn∥
2 + 2σ f (z)− ∥ z ∥2 +2⟨z, Jwn⟩ − ∥wn∥

2 − 2σ f (z) ≤ 0.

This implies that

2⟨z, Jwn⟩ − 2⟨z, Jzn⟩ + ∥zn∥
2 − ∥wn∥

2 ≤ 0,
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thus

2⟨z, Jwn − Jzn⟩ ≤∥ wn ∥
2 − ∥ zn ∥

2 .

Hence, Cn+1 is closed and convex, ∀n ≥ 0. Therefore, Π f
Cn+1

x0. is well defined.

Next, we now show that Ω ⊂ Cn. Assume that zn = Trn un, µn = Jrn wn for all n ≥ 0, p ∈ Ω and by Lemma 2.14, we
get

G(p, Jzn) = G(p, JTrn un)
≤ G(p, Jun)
= G(p, βnJwn + (1 − βn)Jµn)
= ∥ p ∥2 −2⟨p, βnJwn + (1 − βn)Jµn⟩ + ∥βnJwn

+ (1 − βn)Jµn ∥
2 +2σ f (p)

≤ ∥ p ∥2 −2βn⟨p, Jwn⟩ − 2(1 − βn)⟨p, Jµn⟩ + βn ∥ Jwn ∥
2

+ (1 − βn) ∥ Jµn ∥
2 +2σ f (p)

= βnG(p, Jwn) + (1 − βn)G(p, Jµn)
= βnG(p, Jwn) + (1 − βn)G(p, JJrn wn)
= βnG(p, Jwn) + (1 − βn)G(p, Jwn)
= G(p, Jwn), (11)

which implies that

G(p, Jzn) ≤ G(p, Jwn).

So, p ∈ Cn+1. Therefore by induction Ω ⊂ Cn for all n ∈ N. Hence, {xn} is well defined. Since f :−→ R is convex and
lower semi continuous mapping, then it follows from Lemma 2.9 that there exists q∗ ∈ E∗ and γ ∈ R such that

f (x) ≥ ⟨x, q∗⟩ + γ,∀x ∈ E

Now, for xn ∈ E, we have

G(xn, Jx0) = ∥ xn ∥
2 −2⟨xn, Jx0⟩ + ∥x0∥

2 + 2σ f (xn)
≥ ∥ xn ∥

2 −2⟨xn, Jx0⟩ + ∥x0∥ + 2σ⟨xn, q∗⟩ + 2σγ
= ∥ xn ∥

2 −2⟨xn, Jx0 − σq∗⟩ + ∥x0∥
2 + 2σγ

≥ ∥ xn ∥
2 −2 ∥ xn ∥∥ Jx0 − σq∗ ∥ + ∥ x0 ∥

2 +2σγ
= (∥ xn ∥ − ∥ Jx0 − σq∗ ∥)2+ ∥ x0 ∥

2 − ∥ Jx0 − σq∗ ∥2 +2σγ (12)

then, for each p ∈ Ω ⊂ Cn and xn = Π
f
Cn

x0, it follows from definition of Cn and ( 9) that

G(p, Jx0) ≥ G(xn, Jx0)
≥ (∥ xn ∥ − ∥ Jx0 − σq∗ ∥)2+ ∥ x0 ∥

2 − ∥ Jx0 − σq∗ ∥2 +2σγ

Therefore, {xn} is bounded and so are {zn}, {un}, {wn}, and {G(xn, Jx0)}.
From xn+1 = Π

f
C+1x0 ∈ Cn+1 ⊂ Cn, xn = Π

f
Cn

x0, and by Lemma 2.11, we have

0 ≤ (∥ xn+1 ∥ − ∥ xn ∥)2

≤ ϕ(xn+1, xn)
≤ G(xn+1, Jx0) −G(xn, Jx0) (13)
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Hence, {G(xn, Jx0)} is non decreasing. This implies that lim
n→∞

G(xn, Jx0) exists. Now, for any m > n, xn = Π
f
Cn

x0, xm =

Π
f
Cm

x0 ∈ Cm ⊂ Cn and by (13), we obtain

ϕ(xm, xn) ≤ G(xm, Jx0) −G(xn, Jx0).

By letting m, n −→ ∞, we get

lim
n→∞
ϕ(xm, xn) = 0.

It follows from Lemma 2.4 that

lim
n→∞
∥ xm − xn ∥= 0.

Thus, {xn} is cauchy. Since C is closed subset of Banach space E and Cn is closed and convex. We assume that there
exists a point x̂ ∈ C such that

lim
n→∞

xn = x̂. (14)

Also, since lim
n→∞

G(xn, Jx0) exists then by (13), we conclude that

lim
n→∞
ϕ(xn+1, xn) = 0. (15)

Now, by Lemma 2.4

lim
n→∞
∥ xn+1 − xn ∥= 0. (16)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we have

lim
n→∞
∥ Jxn+1 − Jxn ∥= 0. (17)

By the definition of wn from (9), we have

∥ wn − xn ∥=∥ αn(xn − xn−1) ∥≤∥ xn − xn−1 ∥ .

This implies that

lim
n→∞
∥ wn − xn ∥= 0. (18)

Also by (14) and (18), we have

lim
n→∞

wn = x̂. (19)

Since {xn} is bounded, then by Remark 2.5 and (18), we have

lim
n→∞
ϕ(wn, xn) = 0. (20)

Using (16) and (18), we get that

lim
n→∞
∥ xn+1 − wn ∥= 0. (21)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we conclude that

lim
n→∞
∥ Jxn+1 − Jwn ∥= 0. (22)
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Also by Remark 2.5 and (21), we get

lim
n→∞
ϕ(xn+1,wn) = 0. (23)

Now, from the definition of Cn+1 in (9) and xn+1 = Π
f
Cn+1

x0, we have

G(xn+1, Jzn) ≤ G(xn+1, Jwn).

This is equivalent to

∥ xn+1 ∥
2 − 2⟨xn+1, Jzn⟩ + ∥zn∥

2 + 2σ f (xn+1)
≤ ∥ xn+1 ∥

2 −2⟨xn+1, Jwn⟩ + ∥wn∥
2 + 2σ f (xn+1).

Implies that

∥ xn+1 ∥
2 − 2⟨xn+1, Jzn⟩ + ∥zn∥

2

≤ ∥ xn+1 ∥
2 −2⟨xn+1, Jwn⟩ + ∥wn∥

2,

this gives

ϕ(xn+1, zn) ≤ ϕ(xn+1,wn).

Therefore by using (23), we obtain

lim
n→∞
ϕ(xn+1, zn) = 0.

It follows from Lemma 2.4 that

lim
n→∞
∥ xn+1 − zn ∥= 0. (24)

By J is uniformly norm-to-norm continuous on bounded subsets of E, we get that

lim
n→∞
∥ Jxn+1 − Jzn ∥= 0. (25)

Taking into account that

∥ xn − zn ∥≤∥ xn − xn+1 ∥ + ∥ xn+1 − zn ∥ . (26)

Putting (16) and (24) in (26), we obtain

lim
n→∞
∥ xn − zn ∥= 0. (27)

Since xn −→ x̂ ( as n −→ ∞) and by (27), we conclude that

lim
n→∞

zn = x̂. (28)

Using (18) and (27), we obtain

lim
n→∞
∥ wn − zn ∥= 0. (29)

Since J is uniformly continuous on bounded subset of E, we have

lim
n→∞
∥ Jwn − Jzn ∥= 0. (30)
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Also, from the definition of Cn+1, we have

G(xn+1, Jun) ≤ G(xn+1, Jwn).

Which is equivalent to

∥ xn+1 ∥
2 − 2⟨xn+1, Jun⟩ + ∥un∥

2 + 2σ f (xn+1)
≤ ∥ xn+1 ∥

2 −2⟨xn+1, Jwn⟩ + ∥wn∥
2 + 2σ f (xn+1).

This implies that

∥ xn+1 ∥
2 − 2⟨xn+1, Jun⟩ + ∥un∥

2

≤ ∥ xn+1 ∥
2 −2⟨xn+1, Jwn⟩ + ∥wn∥

2,

we get

ϕ(xn+1, un) ≤ ϕ(xn+1,wn).

Using (23), we obtain

lim
n→∞
ϕ(xn+1, un) = 0.

By Lemma 2.4 we conclude that

lim
n→∞
∥ xn+1 − un ∥= 0. (31)

By J is uniformly norm-to-norm continuous on bounded subsets of E, we have

lim
n→∞
∥ Jxn+1 − Jun ∥= 0. (32)

By triangular inequality, we have

∥ xn − un ∥≤∥ xn − xn+1 ∥ + ∥ xn+1 − un ∥ . (33)

Also, putting (16) and (31) in (33), we conclude that

lim
n→∞
∥ xn − un ∥= 0. (34)

Since xn −→ x̂ (as n −→ ∞), it follows from (34) that

lim
n→∞

un = x̂. (35)

Since J is uniformly norm-to- norm continuous on bounded sets, it also follows from (34) that

lim
n→∞
∥ Jxn − Jun ∥= 0. (36)

Using (25) and (32), we obtain

lim
n→∞
∥ Jzn − Jun ∥= 0. (37)

From (11), we have

G(p, Jzn) = G(p, JTrn un)
≤ G(p, Jun)
≤ βnG(p, Jwn) + (1 − βn)G(p, Jµn),
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this implies that

G(p, Jµn) ≥
1

1 − βn

(
G(p, Jzn) − βnG(p, Jwn)

)
Furthermore, by Lemma 2.14, we notice that

ϕ(µn,wn) = ϕ(Jrn wn,wn)
≤ G(p, Jwn) −G(p, JJrn wn)
= G(p, Jwn) −G(p, Jµn)

≤ G(p, Jwn) −
1

1 − βn

(
G(p, Jzn) − βnG(p, Jwn)

)
=

1
1 − βn

(
G(p, Jwn) −G(p, Jzn)

)
=

1
1 − βn

(
∥ wn ∥

2 − ∥ zn ∥
2 −2⟨p, Jwn − Jzn⟩

)
≤

1
1 − βn

(
∥ wn ∥

2 − ∥ zn ∥
2 +2|⟨p, Jwn − Jzn⟩|

)
≤

1
1 − βn

(
(∥ wn − zn ∥)(∥ wn + zn ∥) + 2 ∥ p ∥∥ Jwn − Jzn ∥

)
(38)

Since lim inf
n→∞

(1 − βn) > 0, using (29) and (30), we conclude that

lim
n→∞
ϕ(µn,wn) = 0. (39)

Now, by Lemma 2.4, we have

lim
n→∞
∥ wn − µn ∥= 0. (40)

Since J is uniformly norm-to- norm continuous on bounded subsets of E, we obtain

lim
n→∞
∥ Jwn − Jµn ∥= 0. (41)

Also, using (19) and (40) we obtain µn −→ x̂ (as n→ ∞).

Now, from rn ≥ a, µn = Jrn wn and by (41), we have

lim
n→∞

1
rn
∥ Jwn − Jµn ∥= 0. (42)

Hence

lim
n→∞
∥ S rn wn ∥ = lim

n→∞

1
rn
∥ Jwn − JJrn wn ∥

= lim
n→∞

1
rn
∥ Jwn − Jµn ∥

= 0.

Since {xn} is bounded, there exists a subsequence {xnm } of {xn} such that xnm ⇀ x̂ as m −→ ∞. Furthermore, it follows
from (18), (27), (34), and (40) that wnm ⇀ x̂, znm ⇀ x̂, unm ⇀ x̂, and µnm ⇀ x̂ (as m −→ ∞) respectively. By the fact
that S is monotone and (ϖ,ϖ∗) ∈ S , it follows from Lemma 2.13 that

⟨ϖ − µnm , ϖ
∗ − S rnm

wnm⟩ ≥ 0, ∀n ≥ 0.
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Taking the limit as m −→ ∞, we obtain ⟨ϖ − x̂, ϖ∗⟩ ≥ 0. By the maximality of S , we have

x̂ ∈ S −10.

Next, we show that x̂ ∈ GMEP(Ψ,Φ, φ). Since zn = Trn un, It follows from (37) and r ≥ a that

lim
n→∞
∥

Jzn − Jun

rn
∥= 0 (43)

From zn = Trn un, we get

Γ(zn, y) +
1
rn
⟨y − zn, Jzn − Jun⟩ ≥ 0,∀y ∈ C.

Replacing n by nm, it follows from (L2) that

1
rn
⟨y − znm , Jznm − Junm⟩ ≥ −Γ(znm , y) ≥ Γ(y, znm ),∀y ∈ C. (44)

Letting m −→ ∞ in (44) and by (L4), we get

Γ(y, x̂) ≤ 0,∀y ∈ C.

For λ with 0 < λ ≤ 1, and y ∈ C, assume that yλ = λy + (1 − λ)x̂. Since y ∈ C and x̂ ∈ C, we get that yλ ∈ C and
Γ(yλ, x̂) ≤ 0,∀y ∈ C.
By (L1) and (L3), we have

0 = Γ(yλ, yλ)
≤ λΓ(yλ, y) + (1 − λ)Γ(yλ, x̂)
≤ λΓ(yλ, y).

Dividing by λ, we get

Γ(yλ, y) ≥ 0,∀y ∈ C.

Letting λ −→ ∞ and by (L3), we conclude that

Γ(x̂, y) ≥ 0,∀y ∈ C.

This implies that x̂ ∈ GMEP(Ψ,Φ, φ). Hence x̂ ∈ Ω.
Next, we show that x̂ = Π f

C x0. Setting t∗ = Π f
C x0, and by Lemma 2.10, it follows that Π f

C x0 is single valued. From the
fact that xn = Π

f
C x0 and Ω ⊂ Cn, we have

G(xn, Jx0) ≤ G(t∗, Jx0)

Also, from the definition of G and f , we have that for each x, G(y, Jx) is convex and lower semi continuous with
respect to y. Now from the fact that norm is weakly lower semi continuous, we get

G(x̂, Jxn) = ∥ x̂ ∥2 −2⟨x̂, Jx0⟩ + ∥x0∥
2 + 2σ f (x̂)

≤ lim inf
m→∞

(
∥ xnm ∥

2 −2⟨xnm , Jx0⟩ + ∥x0∥
2 + 2σ f (xnm )

)
≤ lim inf

m→∞
G(xnm , Jx0)

≤ G(t∗, Jx0) (45)

But

G(t∗, Jx0) ≤ G(z, Jx0),∀z ∈ Ω (46)
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Therefore, G(x̂, Jx0) = G(t∗, Jx0).Now, from the uniqueness ofΠ f
C x0,we have x̂ = t∗. Finally, we show that xnm −→ x̂

(as n→ ∞). It follows from (45) and (46) that

lim
n→∞

G(xnm , Jx0) = lim
n→∞

G(x̂, Jx0)

Thus, ∥ xnm ∥−→∥ x̂ ∥, as m −→ ∞. Since xnm ⇀ x̂ (as m −→ ∞), it follows from Lemma 2.12 that xnm −→ x̂ (as
m −→ ∞). Hence xn −→ Π

f
Ω

x0. This completes the proof.

Corollary 3.2. Let E be a uniformly smooth and uniformly convex real Banach space and C be a nonempty closed
and convex subset of E. Let Ψ : C × C −→ R be a bi function which satisfies conditions (L1) − (L4), Φ : C −→ E∗

be continuous and monotone, and φ : C −→ R be a lower semi-continuous and convex function. Let f : E −→ R
be a convex and lower semicontinuous mapping with C ⊂ int(D( f )), where D( f ) is the domain of f . Let S ⊂ E × E∗

be a maximal monotone operator satisfying D(S ) ⊂ C and Jrn = (J + rnS )−1J, for all rn > 0. Assume that Ω :=
GMEP(Ψ,Φ, φ) ∩ S −10 , ∅. Let {xn} be a sequence generated by

x0 ∈ C0 = E;
un = J−1(βnJxn + (1 − βn)JJrn xn);
zn ∈ C such that Ψ(zn, y) + ⟨Φzn, y − zn⟩ + φ(y) − φ(zn)

+
1
rn
⟨y − zn, Jzn − Jun⟩ ≥ 0,∀y ∈ C,

Cn+1 = {z ∈ Cn : G(z, Jzn) ≤ G(z, Jxn)};
xn+1 = Π

f
Cn+1

x0, ∀n ∈ R ∪ {0}

where βn is a sequence in [0, 1], and {rn} ⊂ [a,∞) for some a > 0. Assume that lim inf
n→∞

(1 − βn) > 0 and lim
n→∞

rn = ∞.

The sequence {xn} converges strongly to Π f
Ω

x0, where Π f
Ω

is the generalized f - projection of E onto Ω.

Corollary 3.3. Let E be a uniformly smooth and uniformly convex real Banach space and C be a nonempty closed
and convex subset of E. Let f : E −→ R be a convex and lower semicontinuous mapping with C ⊂ int(D( f )), where
D( f ) is the domain of f . Let S ⊂ E×E∗ be a maximal monotone operator satisfying D(S ) ⊂ C and Jrn = (J+ rnS )−1J,
for all rn > 0. Assume that S −10 , ∅. Let {xn} be a sequence generated by

x0 ∈ C0 = E;
wn = xn + αn(xn − xn−1);
un = J−1(βnJwn + (1 − βn)JJrn wn);
Cn+1 = {z ∈ Cn : G(z, Jzn) ≤ G(z, Jwn)};
xn+1 = Π

f
Cn+1

x0, ∀n ∈ R ∪ {0}

where αn ⊂ (0, 1), βn is a sequence in [0, 1], and {rn} ⊂ [a,∞) for some a > 0. Assume that lim inf
n→∞

(1 − βn) > 0 and

lim
n→∞

rn = ∞. The sequence {xn} converges strongly to Π f
S −10x0, where Π f

Ω
is the generalized f - projection of E onto Ω.

Corollary 3.4. Let E be a uniformly smooth and uniformly convex real Banach space and C be a nonempty closed
and convex subset of E. Let S ⊂ E × E∗ be a maximal monotone operator satisfying D(S ) ⊂ C and Jrn = (J + rnS )−1J,
for all rn > 0. Assume that S −10 , ∅. Let {xn} be a sequence generated by

x0 ∈ C0 = E;
wn = xn + αn(xn − xn−1);
un = J−1(βnJwn + (1 − βn)JJrn wn);
Cn+1 = {z ∈ Cn : ϕ(z, zn) ≤ ϕ(z,wn)};
xn+1 = ΠCn+1 x0, ∀n ∈ R ∪ {0}

where αn ⊂ (0, 1), βn is a sequence in [0, 1], and {rn} ⊂ [a,∞) for some a > 0. Assume that lim inf
n→∞

(1 − βn) > 0 and
lim
n→∞

rn = ∞. The sequence {xn} converges strongly to ΠS −10x0, where ΠΩ is the generalized projection of E onto Ω.
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4. Application

In this section, we present some applications of theorem 3.1 as follows:

4.1. Maximal monotone operator and system of equilibrium problems.
By setting Φ ≡ 0, φ ≡ 0 in theorem 3.1, the sequence defined in theorem 3.1 converges strongly to Π f

Ω
x0, where

Ω := EP(Ψ) ∩ S −10 and EP(Ψ) is the set of solution of the equilibrium problem for Ψ.

4.2. Maximal monotone operator and system of convex optimization problems.
By setting Ψ ≡ 0,Φ ≡ 0 in theorem 3.1, the sequence defined in theorem 3.1 converges strongly to Π f

Ω
x0, where

Ω := CMP(φ) ∩ S −10 and CMP(φ) is the set of solution of the convex optimization problem for φ.

4.3. Maximal monotone operator and system of variational inequalities problems.
By setting Ψ ≡ 0, φ ≡ 0 in theorem 3.1, the sequence defined in theorem 3.1 converges strongly to Π f

Ω
x0, where

Ω := VIP(C,Φ) ∩ S −10 and VIP(C,Φ) is the set of solution of variational inequality problem for Φ over C.

5. Conclusion

Theorem 9 improves the result of Siwaporn Saewan [23]. Since our result involved maximal monotone operator and
generalized mixed equilibrium problems as against only maximal monotone operator. Also, our iterative scheme
incoorperates inertial term that speed the convergence rate of iterative sequence. Furthermore, this work improves the
work of Chidume et al. [5] by incoorperating the system of generalized mixed equilibrium problems in the iterative
scheme and also extends the work from generalized projection to generalized f - projection. Because of the slight
modification of the iterative scheme by incoorperating the inertial term, our result in this paper extends the work
of Siwaporn and kumam [20] from the system of generalized Kly Fan inequality to the system generalized mixed
equilibrium problems. We apply this result to the system of equilibrium problems, convex optimization problems
and variational inequality problems in Banach spaces. Finally, our theorem improves and extends the main results of
Siwaporn Saewan [23], Chidume et al. [5], and Siwaporn and kumam [20] and many results in the literature.
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