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Abstract

The understanding of the drivers of fine particulate matter of diameter less than or equal to 2.5 micrometers (PM2.5) in Nigeria will greatly assist
policymakers and other stakeholders in developing appropriate air quality management strategies to protect the health of the public. This research
analyzed the drivers of PM2.5 threshold exceedance (PTE) in Nigeria from 2000 to 2022, employing a multivariate logistic regression (MLR) model.
The work assessed aerosol emission variables (AEVs) and meteorology variables (MEVs) to understand their impact on PM2.5 concentrations.
Results showed a significant spatial heterogeneity in the trend of PM2.5 concentrations, with increasing values in all the study areas. The estimated
coefficients of black carbon emission (BCEM) and sulfate emission (SUEM) showed a significant positive response, exacerbating the threshold
exceedance in Abuja and Lagos, while dust emission (DUEM) had a significant positive response in Kano and Lagos. On the other hand, OCEM
had a negative association in all the study locations. The MEV variables of sea level pressure (SLP), relative humidity (RH), planetary boundary
layer height (PBLH), and wind speed (WS) had significant negative responses in Abuja, while RH and WS were significant in Kano, and RH,
PBLH, and precipitation (P) were significant in Lagos, indicating that the PM2.5 concentrations decrease with increasing values of these factors;
however, temperature (TMP) had a significant positive response in Lagos but was not significant in Abuja and Kano. The output of the study
revealed complex relationships between aerosol emissions, climate, and other environmental variables driving the PTE in Nigeria.
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1. Introduction

Fine particulate matter (PM2.5) in the ambient air is a potential risk for public health all over the world. Due to its small diameter
of 2.5 microns or PM2.5 can transport toxic substances deep into the lower regions of the respiratory tract, inducing potentially
harmful health effects [1, 2]. The presence of pollutant chemical, biological, or physical elements in the ambient air modifies the
composition of this medium and is known as air pollution [3]. Air pollution can negatively affect health and is associated with poor

∗Corresponding author: Tel.: +234-803-695-2266.

Email address: tertsea.igbawua@uam.edu.ng (Tertsea Igbawua )

1

https://orcid.org/0000-0002-5131-1445
https://nsps.org.ng
https://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0002-5131-1445


Igbawua et al. / African Scientific Reports 3 (2024) 212 2

outcomes including low birth weight, respiratory illnesses, allergic rhinitis, gross motor development delay, lung cancer, increased
risks of neurological disorders, and overall poorer health [2, 4–8].

For the monitoring of ambient air, its quality has to be checked and modeled regarding the concentration of pollutants (like
PM2.5) it contains. Air quality modeling techniques are often employed, particularly when pollutant levels exceed the guidelines or
regulatory limits [9]. Several documented studies have reported that meteorological [1, 5, 10–12] and aerosol variables [5] strongly
affect PM2.5 ambient levels. Xu [12] reported that increased temperature was the most important factor for the increase in PM2.5
concentration, while an increase in the normalized difference vegetation index (NDVI) played an important role in the reduction
in PM2.5 concentration. Also, Xu [12] suggested that precipitation and the green coverage rate of built-up areas cause the PM2.5
concentrations to change, whereas others have indicated that the PM2.5 concentration changed with the growth in population and
gross domestic product (GDP). Sun [1] determined that from 2013–2016, the influencing factors of PM2.5 pollution days included
wind speed, no precipitation day, relative humidity, population density, construction area, transportation, coal consumption, and
green coverage rate. A report by Yang [11] indicated that wind speed was the most important meteorological factor affecting PM2.5
and PM10; temperature, air pressure, and relative humidity were also key affecting factors in some seasons. Among the above
meteorological factors, wind velocity, rainfall, air temperature, soil temperature, and soil humidity are negatively correlated with
PM2.5 concentrations [10]. Sulaymon [13] documented and elucidated the influence of meteorological conditions on the formation
and dispersion of PM2.5 during atmospheric pollution episodes (APE).

The World Health Organization (WHO) has set standards and threshold limits for the management of exposures to air pollution
[8]. According to Angulo and Madrid [14], threshold exceedances are essentially the standard for risk assessment. The analysis of
environmental phenomena for risk assessment usually involves the construction of indicators related to the structural characteristics
of extremal events defined by exceedances over critical thresholds [15]. Threshold exceedances have been studied using Markov
chain models [16]. Accordingly, Grineski et al. [17] worked on PM2.5 threshold exceedances (PTEs) during the prenatal period and
the risk of intellectual disability and demonstrated that chronic exposure to fine particulates increases the risks of neurodevelopmental
conditions, such as intellectual disability (ID). Rincon et al. [18] conducted a study on PM2.5 exceedances and identified their sources
to help in developing an early warning system. They created a logistic model to predict PM2.5 exceedances (≥ 12.5 µg/m3) and found
that both forest fires and heavy traffic played significant roles in elevating PM2.5 concentrations.

Increased air pollution has been observed in densely populated Nigerian cities such as Lagos, Abuja, and Port-Harcourt [5]. Re-
sults from an air pollution assessment by Sulaymon et al. [5] in Lugbe, Abuja, showed that the highest ambient PM2.5 concentrations
(142 µg/m3) were recorded in January, while the lowest (84 µg/m3) were observed in July. Idris et al. [19] investigated the effect of
meteorological parameters on the dispersion of vehicular emissions in some selected areas in Kano State, Nigeria. The concentration
of PM2.5 was highest at sampling point 2 (IBB Road), with a value of 184 µg/m3. In Abuja, Wambebe & Duan [20] investigated air
quality levels and also did a health risk assessment of particulate matter (PM), and results showed that the daily averaged concentra-
tions of PM2.5 varied from 15.30 µg/m3 to 70.20 µg/m3. The top four most polluted locations were found to be above the acceptable
(25 µg/m3) air quality index (AQI) limit stipulated by WHO, which all fell far below the unhealthy AQI value index level. Kanee
et al. [21] also worked in Abuja, and reports showed that air quality during the dry season was 15–95 µg/m3 for PM2.5 while in the
wet season, 09–75 µg/m3 was observed for PM2.5. Sulaymon et al. [13] modeled PM2.5 in Lagos, and results showed that spatially
elevated PM2.5 concentrations were found in the northwestern region of Lagos, an urban area with higher anthropogenic emissions.
Residential land use contributed the most to total PM2.5 (∼40 µg/m3), followed by industry (∼20 µg/m3). In all the earlier-mentioned
works done in Nigeria, all concentrations exceeded the threshold limits set out by the WHO and local national standards.

This study focused on three locations: the Federal Capital Territory (Abuja), Kano (Kano), and Lagos (Lagos). These states were
chosen based on reports of elevated PM2.5 readings [3, 13, 19, 21] and the availability of ground-based data. In all these studies, AQI
and WHO standards have been exceeded, emphasizing the need to study the factors influencing PM2.5 Threshold Exceedance (PTE)
in the selected states. The work adopted satellite data for the spatial representation of PM2.5 due to the scarcity and very limited
availability of ground observation datasets. Satellite data has been invaluable for conducting spatial air pollution research due to
its synoptic spatial coverage and low cost. Given these considerations, the purpose of this study was to investigate the effects of
meteorological factors and aerosol emission variables on PTE from 2000 to 2022.

2. Materials and methods

2.1. Study area
PM2.5 pollution is a great problem in Abuja, Kano and Lagos, with all the cities experiencing high levels of fine particulate matter

which are mainly emitted from local sources and transported from farthest sources to the receptor areas of the study [5]. Despite
the variation in the geographical locations of the states and their distances from natural sources such as desert and ocean (Figure 1),
each state is facing the challenges of air pollution as a result of its high population density. In Kano, its closeness to the desert leads
to the abundance of airborne dust particles in the atmosphere which could greatly increase the concentrations of PM2.5. Moreover,
industrial activities and vehicle emissions also add to the magnitude of air pollution in this highly populated city. Abuja is located
in the center of Nigeria and high levels of PM2.5 in this city are mainly attributed to urbanization, vehicle emissions, long range
transport from farthest sources and industrial activities. Its increasing population and development lead to the increase in the levels
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Figure 1: Study area.

of pollution in the city despite the efforts put in place to establish regulations for air quality in the city. Lagos state is nearest to the
ocean and therefore gets affected by the oceanic activities. The high population density and large extent of industrial, sea salts, long
range transport from farthest sources and commercial activities are the major contributors to the air pollution problems in this highly
populated metropolitan city. Vehicle emissions, industrial pollution and biomass burning also contribute to the high concentrations
of PM2.5 in all the chosen study areas. In the end, regardless of their distinct geographical features and population densities, Abuja,
Kano, and Lagos all struggle with excessive PM2.5 levels, demanding comprehensive actions to reduce air pollution and protect
public health in these major study areas.

2.2. Data
The data sets (Table 1) used in this work include: Modern-Era Retrospective analysis for Research and Applications, Version

2 (MERRA2) [22–24]. European Center for Medium Range Forecast (ECMWF) version 5 (ERA5) [25]. Climatic Research Unit
(CRU) of the University of East Anglia. The CRU data are a collection of observation stations from meteorological stations around
the world that are gridded into a global high-resolution data set [26]. The ground-based observation data for PM2.5 was obtained
from the PurpleAir data sensor network. The PM2.5 mass concentration [27] was aggregated from the various aerosol species using
equation 1.

PM2.5 = 1.375 × [S O4S MAS S ] + [OCS MAS S ] + [BCS MAS S ] + [DUS MAS S 25] + [S S S MAS S 25] . (1)

2.3. Methods
2.3.1. Prediction of PM2.5 threshold exceedance using Multivariate Logistic Regression Model (MLRM)

The standard MLRM was used to predict the factors influencing PTE in the study area. The MLRM is given in [28] as:

p(y = 1 |x ) =
1

1 + e−(a+b1 x1+b2 x2+···+bn xn) , (2)

where p(y = 1 |X ) is the probability of the dependent variable being in class 1, the exp is the base of the natural logarithm, b1, b2. . . bn

are the coefficients for the independent variables x1, x2. . . xn respectively and a is the intercept. The coefficients (Equation (2)) reflect
the impact of each independent variable on the likelihood of PM2.5 concentrations exceeding the WHO threshold.
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Table 1: Data sets used for this study.

Data Quantity Resolution Temporal
Span

ERA5 Precipitation (P) 0.5 × 0.5 2000 – 2022
Temperature (TMP) 0.5 × 0.5 2000 – 2022
Wind speed (WS)
Relative humidity (RH)

0.5 × 0.5
0.5 × 0.5

2000 – 2022
2000 – 2022

MERRA2 Black Carbon surface mass conc. (BCSMASS) 0.5 × 0.625 2000 – 2022
Organic Carbon surface mass conc. (OCSMASS) 0.5 × 0.625 2000 – 2022
Dust surface mass conc. PM25 (DUSMASS25) 0.5 × 0.625 2000 – 2022
Sulfate surface mass conc. (SO4SMASS) 0.5 × 0.625 2000 – 2022
Sea salt surface mass conc. PM25 (SSSMASS25) 0.5 × 0.625 2000 – 2022
Air Density 0.5 × 0.625 2000 – 2022
Planetary Boundary Layer Height (PBL) 0.5 × 0.625 2000 – 2022
Sea Level Pressure (SLP) 0.5 × 0.625 2000 – 2022

PurpleAir
data CRU

PM2.5Temperature and Precipitation Station based
Gridded (0.5 ×
0.5)

2000 – 2022

Table 2: Multivariate regression model for aerosol emission rate (µg/m2/s) Variables (AEV).

Coefficient Estimate Std. Error z Pr (>|z|) Sign. Level AIC
Abuja (Intercept) 0.247 1.927 0.128 0.89800 135.32

BCEM 695.841 148.506 4.686 0.00000 ***
OCEM -428.646 92.599 -4.629 0.00000 ***
SUEM 3.561 1.562 2.280 0.02260 *

Kano (Intercept) -3.777 1.814 -2.082 0.03738 * 189.44
DUEM 7.565 3.517 2.151 0.03151 *
BCEM 32.275 10.063 3.207 0.00134 **
OCEM -16.791 7.364 -2.280 0.02260 *
SUEM 3.849 1.591 2.419 0.01556 *

Lagos (Intercept) -2.556 0.843 -3.032 0.00243 ** 193.76
BCEM 91.890 17.621 5.215 0.00000 ***
OCEM -72.534 17.719 -4.094 0.00004 ***
SUEM 6.018 1.411 4.265 0.00002 ***
SSEM -9.062 1.366 -6.635 0.00000 ***
DUEM 4.309 1.490 2.892 0.00382 **

(Significant levels: 0 (***), 0.001(**). 0.01 (*), 0.05 (−))

The binary input variable of the model was designed by setting values of PM2.5 based on the World Health Organization’s (WHO)
threshold limits of 35 µg/m3 [8]. Consequently, values of the PM2.5 < 35 µg/m3 were set to 0, while values >= 35µg/m3 were set to
1 in each study location.

The value of p is the log of odds, and the odds are a function of p which is assumed to be linear [29] (Equation (3)). The
relationship between the probability of the dependent variable being in class 1 and the independent variables is expressed through the
logit function [30]. This is illustrated by Equation (3), which simplifies the relationship by taking the natural logarithm of the odds
ratio [29]. Essentially, it helps to transform the probability of PM2.5 exceeding the threshold into a form that can be easily modeled
using a linear equation given by:

logit(log (odds)) = logit (p(y = 1 |X ) ) = a + b1x1 + b2x2 + · · · + bnxn = ln
(

p
1 − p

)
. (3)

The value of p was converted to another categorical variable using the value of 0.5, which was considered as fitted variable, and
compared with the original x values to determine the prediction accuracy, specificity, sensitivity and precision of the model. Similarly,
for p ≥ 0.5 and p < 0.5, the value of p was converted to 1 and 0 respectively. The accuracy, sensitivity, specificity, and precision of
the model was determined as:

accuracy =
T P + T N

N
, (4)
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Table 3: Multivariate Logistic Regression Model (MLRM) for Meteorological Variables (MEV).

Coefficient Estimate Std. Error z Pr(>|z|) Sign. Level AIC
Abuja (Intercept) 15.174 4.513 3.362 0.00077 *** 108.52

SLP -4.996 2.542 -1.966 0.04933 *
RH -12.700 4.674 -2.717 0.00658 **
TMP 6.268 4.817 1.301 0.19322
PBLH -6.949 3.307 -2.101 0.03563 *
WS -4.645 1.702 -2.728 0.00636 **
P -3.837 2.597 -1.478 0.13951

Kano (Intercept) 20.379 5.656 3.603 0.00031 *** 99.13
SLP -7.852 5.595 -1.403 0.16054
RH -13.979 4.672 -2.992 0.00277 **
TMP 3.448 6.819 0.506 0.61311
PBLH -5.219 5.465 -0.955 0.33966
WS -6.917 2.284 -3.028 0.00246 **
P -3.220 2.796 -1.152 0.24951

Lagos (Intercept) 14.571 4.965 2.935 0.00333 ** 93.35
SLP -2.824 2.652 -1.065 0.28692
RH -11.935 4.909 -2.431 0.01506 *
TMP 5.989 3.054 1.961 0.04988 *
PBLH -5.672 2.762 -2.054 0.04001 *
WS -0.710 2.564 -0.277 0.78188
P -21.399 4.243 -5.043 0.00000 ***

(Significant levels: 0 (***), 0.001(**). 0.01 (*), 0.05 (−))

Table 4: Confusion matrix of Aerosol Emission Rate (AEV) and Meteorological Variables (MEV) logistic regression model.

Variables Actual
Value

Abuja Kano Lagos

AEV VALUE FALSE TRUE FALSE TRUE FALSE TRUE
0 114 4 41 27 140 17
1 22 136 19 189 20 99

MEV VALUE FALSE TRUE FALSE TRUE FALSE TRUE
0 107 11 62 6 144 13
1 10 148 13 195 6 113

sensitivity =
T P

(T P + FN)
, (5)

specificity =
T N

(T N + FP)
, (6)

precision =
T P

(T P + FP)
, (7)

where TN (true negative) is the number of samples actually classified as negative and were correctly predicted as negative, TP (true
positive) is the number of samples that are actually classified as positive and were predicted as positive, FN (false negative) is the
number of samples that are actually positive but predicted as negative, FP (false positive) is the number of samples that are actually
negative but predicted as positive, and N is the total number of observations.

In this study, the whole time series had 276 observations of monthly data records from the years 2000 to 2022. We partitioned
the data into 70% and 30% for training and testing, respectively. The multivariate logistic regression algorithm developed in R-Lab
was applied in this study. Two classes of response variables were considered. They are meteorological variables (MEV) and aerosol
emission variables (AEV). The meteorological variables (MEV) include relative humidity (RH), wind speed (WS), precipitation (P),
temperature (TMP), sea level pressure (SLP), and planetary boundary layer height (PBLH). The aerosol emission variables (AEV)
include dust emissions (DUEM), black carbon emissions (BCEM), organic carbon emissions (OCEM), sea salt emissions (SSEM),
and sulfate emissions (SUEM). The AEV and MEV model PTE in each of the study sites.
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Figure 2: Annual distribution of PM2.5 from 2000 to 2022.

3. Results and discussion

3.1. Spatial and temporal distribution of PM2.5 in the study area

Figure 2 shows the annual average concentration of PM2.5 (µg/m3) from 2000–2022, in all the study sites. The findings showed
significant monthly variations in the aerosol concentration of PM2.5 in all the states. The maximum value was recorded in Kano State
and the minimum in Abuja and Lagos State. The linear regression slopes, which indicate the consistent increase in the concentration
of PM2.5 over the months, were 0.0052, 0.0085, and 0.0065 µg/m3/month in Abuja, Kano, and Lagos, respectively.

A similar distribution pattern is seen for BC and OC, with high loads in the southwest and south-south states and moderate to low
loads in the north-central and northwest states (Figures 3a and 3b). A high distribution of SU (Figure 3c) is seen in the south, north,
and north-central states, with scattered low values in the northwest states, especially around Sokoto State. The distribution of sea salt
(Figure 3d) is confined mainly to states close to the ocean (the Atlantic and Gulf of Guinea). The distribution of DU is similar to that
of PM2.5, with high values in northern areas and low values in southern areas, as shown in Figure 3e.

The results presented in Figure 4 illustrate the mean concentrations of various aerosol species, the percentage composition of
aerosol concentrations in each state, and the percentage composition of aerosol species at the study sites. Dust (DU) has the highest
percentage concentration of PM2.5 across all states, with values of 42.8 µg/m³ in Abuja, 61.8 µg/m³ in Kano, and 30.8 µg/m³ in
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Figure 3: Mean spatial distribution of (a) Black Carbon (BC), (b) Organic Carbon (OC), (c) Sulfate (SU), (d) Sea Salt (SS), (e) Dust (DU), and (f)
PM2.5

Lagos. Next, OC concentrations were 8.9 µg/m³ in Abuja, 7.3 µg/m³ in Kano, and 8.5 µg/m³ in Lagos. Sea salt (SS) concentrations
were lower, measuring 0.7 µg/m³ in Abuja, 0.3 µg/m³ in Kano, and 3.8 µg/m³ in Lagos. Kano had the highest concentration of DU,
followed by Abuja and Lagos. The percentage composition of BC, DU, OC, SS, and SU in PM2.5 over Abuja was 2, 79, 16, 1, and
1%, respectively. In Kano, it was 2, 87, 10, 0, and 1%, respectively. For Lagos, it is 2, 69, 19, 8, and 1%, respectively. Sulaymon
et al. [5] reported that out of the highest and lowest ambient PM2.5 concentrations recorded in winter (142 µg/m3) and summer (84
µg/m3), respectively, it was suggested that dust contributed up to 40.5% of the total PM2.5 mass.

3.2. Multivariate Logistic Regression Model (MLRM) to investigate influencing factors of PM2.5 threshold exceedance

Table 2 shows the Multivariate Regression Model for Aerosol Emission Variables (AEV), which considers the effects of aerosol
emission rates and meteorological variables on PTE, where the z-value is obtained by dividing the estimate by the standard error.
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Figure 4: (a) Mean aerosol concentration species with standard deviation (STD) as error bar. (b) Percentage composition of aerosol species in
study sites.

For Abuja, both mean DUEM and SSEM variables were zero in all months, while Kano’s SSEM was zero in all months for aerosol
emission rates; hence, they were removed from the model. However, OCEM was negatively correlated with PTE in Abuja, Kano, and
Lagos, with MLRM coefficients of -428.646, -16.791, and -72.534, respectively. Also, SSEM was significantly negative for PTE in
Lagos (coefficient: -9.062). On the other hand, BCEM, SUEM, and DUEM were positively correlated with PTE in Abuja and Lagos.
The model with the lowest AIC, which represents the best fit, occurred in Abuja. Figure 4 shows that the ambient concentration of
DU aerosol is highest in each state; however, the emission rate of DU (DUEM) is zero in Abuja. This suggests that the contribution
of DU to ambient PM2.5 in Abuja is primarily due to long-range transport from remote DU sources. The 120-h backward trajectories
results showed that there was evidence of long-range regional transport of PM2.5 into the Lugbe area during the sampling period [5].

Table 3 shows the Multivariate Logistic Regression Model (MLRM) for Meteorological Variables (MEV), with the z-value
obtained by dividing the estimate by the standard error. The result showed a negative relationship between all the variables except
temperature and PTE in all states. SLP, RH, PBLH, and WS were significantly negative for PTE in Abuja, while in Kano, only
RH and WS were significantly negative for PTE. Likewise, RH, PBLH, and P were significantly negative for PTE in Lagos. This
implies that when SLP, RH, PBLH, WS, and P are increased, PM2.5 is expected to decrease in the study areas. On the other hand,
TMP was significantly positive in Lagos but insignificantly positive in Abuja and Kano. This means that TMP over Lagos, when
increased, directly increases PTE. The lowest AIC, which indicates the best fit for the model, was recorded in Lagos. Table 4 displays
the confusion matrix of the emission rate and meteorological variables in the logistic regression model (MLRM) using Equations
4–7. The summary gave the correct and incorrect predictions made during modeling. The matrix was therefore used to estimate
the Performance of the models in terms of accuracy, Sensitivity, Specificity and Precision as displayed in Table 5. From the results,
the AEV model showed the highest precision in Abuja, while the MEV model showed the highest precision in Kano and Lagos.
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Figure 5: Predicted Probabilities versus PM2.5 concentration showing Logistic fit of AEV and MEV model with confidence and prediction bands.

Zhang and Jiang [10] reported that meteorological factors including wind velocity, rainfall, air temperature, soil temperature, and
soil humidity have a negative correlation with PM2.5 concentration, but in the current work, wind speed and precipitation have a
negative correlation with PM2.5 while temperature has a positive correlation with PM2.5. Xu et al. [12] also confirmed in their report
that TMP strongly correlates with an increase in PM2.5.

Figure 5 shows the predicted probability of the outcome (usually coded as 1 or 0) for MEV and AEV in each state on the y-axis
and the dependent variable (PM2.5) on the x-axis. Each point on the plot is an observation in the data set, and its position on the plot
is the predicted probability of the outcome based on the Logistic Regression Model (LRM). The results showed that high clusters of
PM2.5 values < 35 µg/m3 were associated with lower predicted probabilities close to 0. Similarly, PM2.5 values >= 35 µg/m3 had
high clusters close to the outcome coded as 1, which tend to have higher predicted probabilities.

3.3. Validation of satellite-derived data with observation data

3.3.1. ERA-5 precipitation and temperature with ground-based CRU observation Data
The performance evaluation of precipitation and temperature over the three cities in Nigeria using Taylor diagrams is represented

in Figure 6(a)–(f). The metrics used by these diagrams include the standard deviation, the root mean square error (RMSE), and the
correlation coefficient (r). The reference variable (REF), illustrated in the Taylor diagrams (Figure 6), was the ground observation
data used for validating precipitation, temperature, and PM2.5. For temperature over Abuja, the RMSE of 4.38 shown on the diagram

9
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Figure 6: Comparison of satellite precipitation, temperature and PM2.5 data with in situ observation data. The ground observation data for climate
(P and TMP) and PM2.5 are CRU and PurpleAir data, respectively.

Table 5: Model Evaluation for AEV and MEV logistic regression model.

Variables Metric Abuja Kano Lagos
AEV Accuracy 90.58 83.33 86.59

Sensitivity 86.07 90.86 83.19
Specificity 96.61 60.29 89.17
Precision 97.14 87.50 85.34

MEV Accuracy 92.39 93.12 93.12
Sensitivity 93.67 93.75 94.95
Specificity 90.67 91.17 91.72
Precision 93.08 97.01 89.68

indicates that, on average, there is a difference of 4.38 ◦C between the satellite and the observed data, and the correlation coefficient of
0.99 implies a very strong positive linear correlation. For Kano, the larger RMSE value of 6.1 ◦C indicates the satellite data is larger
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than the observation data by this amount, or vice versa on average. However, the correlation coefficient of 0.93 still denotes a very
strong relationship. Lagos, as shown in the bottom row, has a much lower RMSE of 2.6 ◦C, indicating that, on average, predictions
for this city are much more accurate. Lagos also has the same very high correlation coefficient of 0.99 as Abuja, indicating strong
agreement between satellite and actual values.

For satellite precipitation data, distinctive patterns emerged. For Abuja and Kano, the relatively high RMSE of up to 40 mm/month
suggests substantial prediction errors; however, the correlation coefficient of 0.91 (Abuja) and 0.92 (Kano) indicated a strong positive
linear relationship. Conversely, our findings in Lagos show a higher RMSE of up to 50 mm/month, suggesting larger prediction errors
compared to both Abuja and Kano. However, the remarkably high correlation coefficient of 0.99 indicates an exceptionally strong
positive linear relationship, suggesting that despite higher RMSE, the satellite performance closely aligns with the observed values.

3.3.2. Comparison of PM2.5 satellite data with ground-based PurpleAir observation data
The validation statistics are shown in Figure 6. It can be noticed that the statistics are quite different for each city. For Abuja, the

model showed an RMSE of 22.0 and a correlation coefficient of 0.93. For Kano, the RMSE was 35.8 and the correlation coefficient
was 0.89. For Lagos, the RMSE was 34.34 and the correlation coefficient was 0.48. The statistics give a good insight into how the
data performed and how well it represents the PM2.5 concentrations in the study locations. The model-predicted PM2.5 concentrations
showed different levels of skill for the three states.

4. Conclusion

A multivariate logistic regression analysis was carried out for the period 2000–2022 to examine the influencing factors for PM2.5
threshold exceedance (PTE) in Nigeria. The results showed that BCEM and SUEM were significant at the level of P < 0.01 for
PTE in Abuja and Lagos, implying that they can potentially enhance the concentrations of PM2.5 pollution in the states. Besides,
DUEM was significant at the level of P < 0.01 for PTE in Kano and Lagos. On the other hand, OCEM was negatively correlated
with PTE at the level of P < 0.01 for all three states of Abuja, Kano, and Lagos. Therefore, OCEM is not the main cause of the high
concentrations of PM2.5 in the study states. Meteorological variables (MEV) including sea level pressure (SLP), relative humidity
(RH), planetary boundary layer height (PBLH), and wind speed (WS) were significant at the levels of P < 0.05 or P < 0.01 for PTE
in Abuja, and the negative correlations were opposite to the change trends of PM2.5. This implies that the increase of those MEVs
resulted in a decrease in PM2.5 concentrations in the study states. Only RH and WS were significant at the level of P < 0.05 for PTE
in Kano, and RH, PBLH, and P were significant at the level of P < 0.01 for PTE in Lagos. This indicated that the increase of RH,
PBLH, and P resulted in a decrease in PM2.5 concentrations in the study states. TMP was significant at the level of P < 0.01 for
PTE in Lagos, but its partial regression coefficient was not significant for Abuja and Kano. This implies that higher TMP in Lagos
directly contributes to the increase of PTE in the city. In general, the results emphasize the urgent need for periodic, systematic,
and continuous assessment of air quality in the cities of Nigeria and thus should be considered in policy implementation to reduce
emissions in the country, as Nigeria joined the Conference of Parties (COP) 21 Paris Agreement in 2015 to tackle climate change.
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