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Abstract

In this paper, we studied and analysed a new iterative method for solving time-fractional non-linear equations by obtaining approximate solutions to
the Allen-Cahn, Newell-Whitehead, and Fisher equations by putting the parameter α = 1 and varying the values of γ, ψ, and τ. These three equations
were derived from the general non-linear dynamical wave equations when the constants therein assumed certain specific values. Obviously, from
the tabulated results, we observed that the approximate solution for each example compares favourably with the existing results in the literature;
therefore, the proposed scheme is effective and accurate in solving Allen-Cahn, Newell-Whitehead, and Fisher equations. All the computational
work was done using Mathematica, and all the graphs were plotted using MATLAB.
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1. Introduction

One of the most useful mathematical physics models developed in the recent past is the general nonlinear parabolic equation
model, which arises in quatum mechanics, plasma physics, and mathematical biology [1–3]. This general dynamical equation
produces three major well-known equations with applications in various biological models, quantum mechanics, and plasma physics.
These include the Allen-Cahn (AC) equation, the Newell-Whitehead (NW) equation (also known as the Newell-Whitehead-Segel
equation), and the Fishers equation [1].

Many brilliant attempts exist in the literature, all aiming at providing the most acceptable solutions to various aspects of the
general parabolic non-linear equations. Prominent among them is the modified variational iteration algorithm II that was developed
in Ref. [1], Homotopy analysis, and Homotopy-Pade methods employed in Ref. [4] to solve the Newell-Whitehead equation. Li
et al. [5] investigated the accuracy of two-term time-fractional PDE models using the meshless method. Babolian and Saedian
[6] also proposed an analytic approximation approach to the Fishers equation. Sakar et al. [7] applied the homotopy perturbation
method (HPM) to solve fractional partial differential equations (PDEs) with proportional delay. Natural transform decomposition
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method and iterative Shehu transform method were employed to find the numerical solution to the nonlinear time fractional Klein-
Gordon equation in Ref. [8]. Issa et al. [9, 10] employed shifted Gegenbuer polynomials to find an approximate solution to fractional
diffusion equations via the finite difference method and compact finite difference method. The wavelet method was however proposed
in Ref. [11] for the solution of some non-linear parabolic equations, while the Legendre wavelet-based approximation method that
improved the method proposed in Ref. [11] was presented in Ref. [12]. The non-linear stability of the implicit-explicit methods for
the Allen-Cahn equation was elaborately discussed in Ref. [13].

The present work was motivated by the recent work of Hijaz Ahmad and his collaborators reported in Ref. [1]. In their work,
the general dynamical parabolic equation was studied with the results presented for the Allen-Cahn, Newell-Whitehead, and Fisher
equations. Here in this paper, we studied the same set of equations using the elegant new iterative method (NIM) implemented in the
recent work of Akinyemi and his collaborators in Ref. [14].

Many other authors had earlier proposed some iterative methods for solutions to many other families of problems. These include
an iterative method that was reported in Ref. [15] for solutions of nonlinear functional equations; NIM was also applied to partial
differential equations in Ref. [16]; and a modified iterative method was adopted for solutions of both linear and non-linear Klein-
Gordon (KG) equations in Ref. [17]. Other efforts on NIM are Refs. [2, 3, 18–20].

The choice of NIM implemented in Ref. [14] was informed by the simplicity of its implementation and the superiority of the
accuracy of the results obtained through it.

The remaining part of this paper is organised as follows: In Section 2, a statement of the problem and method of solution, a general
non-linear parabolic dynamical equation, and a description of the iterative method are presented. In Section 3, the implementation
of the method described in Section 2 is presented for specific cases of the general equation. The results of numerical experiments
are presented in Section 4, with tables representing both 2 − D and 3 − D graphical representations of the results. The paper ends in
Section 5 with the discussion of results and conclusion.

2. Statement of the problem and method of solution

In this section, the generalised form of the nonlinear parabolic dynamical equation and the iterative method of solution for the
three constituents of the equation are discussed.

2.1. General non-linear parabolic dynamical equation

The general nonlinear dynamical wave equation considered in this paper is of the form:

Dα
t v = vxx + γv + ψvτ, (1)

where α, γ, ψ, and τ are real constants. It should be noted that α shall be taken as 1 throughout this work.
The nature of Eq. (1) is determined basically by the values assigned to γ, ψ, and τ. For instance, when γ = 1, ψ = −1, and τ = 3,

the resulting equation,
Dtv = vxx + v − v3, (2)

is called the Allen-Cahn equation. On the other hand, if τ = 2 and ψ = −γ, the resulting equation,

Dtv = vxx + γv − γv2, (3)

is called the Fishers equation. And, when ψ = −ψ and τ = 3, the resulting equation

Dtv = vxx + γv − ψv3, (4)

is called the Newell-Whitehead equation that appears in the discussion of Rayleigh-Benard convection (see Ref. [1] and the references
therein).

2.2. Description of the new iterative method (NIM)

Consider a wave equation of the form:

v(x, t) = ℓ(v(x, t)) + N(v(x, t)) + h(x, t), (5)

where ℓ and N are linear and non-linear operators, and h(x, t) and v(x, t) are known and unknown functions, respectively.
Let

Vm(x, t) =
m∑

i=0

vi(x, t), (6)

2
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which converges to a unique solution as reported in Refs. [3, 14, 20]. Decomposition of linear and non-linear operators was reported
in Refs. [14, 15, 21] as

ℓ(v(x, t)) = ℓ(v0(x, t)) + ℓ(v1(x, t)) + · · · + ℓ(vm(x, t)) + · · ·

=

∞∑
i=0

ℓ(vi(x, t)),
(7)

and

N(v(x, t)) = N(v0(x, t)) +
∞∑

i=1

N
 i∑

k=0

vk(x, t)

 − N

 i−1∑
k=0

vk(x, t)


 , (8)

substituting Eqs. (7) and (8) in Eq. (5) gives

∞∑
i=0

vi(x, t) =
∞∑

i=0

ℓ(vi(x, t)) + N(v0(x, t)) +
∞∑

i=1

N
 i∑

k=0

vk(x, t)

 − N

 i−1∑
k=0

vk(x, t)


 + h(x, t). (9)

From Eq. (9), we have
v0 = v(x, 0) = h(x), initial condition
v1 = ℓ(v0) + N(v0),
v2 = ℓ(v1) + N(v0 + v1) − N(v0),
v3 = ℓ(v2) + N(v0 + v1 + v2) − N(v0 + v1),
...

vn+1 = ℓ(vn) + N

 n∑
i=0

vi(x, t)

 − N

n−1∑
i=0

vi(x, t)

 , i = 1, 2, . . .

(10)

3. Description of the method

In this paper, we consider a non-linear parabolic equation of the form (1), that is,

Dα
t v = vxx + γv + ψvτ, (11)

with initial condition
v(x, 0) = h(x). (12)

Introducing Jα to both sides of Eq. (11) results in an integral equation of the form Eq. (5), that is,

v(x, t) = ℓ(v(x, t)) + N(v(x, t)) + h(x, t), (13)

where
v0 = h(x),
ℓ(v(x, t)) = Jα (vxx + v) ,
N(v(x, t)) = Jα (ψvτ) .

(14)

We then solve for the series solution using Eq. (10).

Definition 1: Gamma function is defined as:

Γ(x) =
∫ ∞

0
ux−1e−udu, where R(x) > 0. (15)

Definition 2: Let α > 0 and m be an integer such that m − 1 < α < m, then the Riemann-Liouville fractional derivative of v is
defined as [22, 23]:

Dαv(x, t) =


Jm−αv(m)(x, t), m − 1 < α < m

v(m)(x, t), α = m
, (16)

where

Jαv(x, t) =
1
Γ(α)

∫ t

0
(t − σ)α−1v(x, σ)dσ, α, t > 0. (17)

Note that when α = 0, then Jαv(x, t) = v(x, t). Other properties for function v(x, t) are:

3
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(a)
JαJνv(x, t) = JνJαv(x, t) = Jα+νv(x, t). (18)

(b)

Jαtξ =
Γ(ξ + 1)
Γ(α + ξ + 1)

tξ+α, α, ν ≥ 0, ξ > −1. (19)

Eq. (16) must satisfy the following properties:

Dα [
ρv(x, t) + δu(x, t)

]
= ρDαv(x, t) + δDαu(x, t), δ, ρ ∈ R, (20)

JαDαv(x, t) = v(x, t) −
m−1∑
i=0

vi(x, 0)
ti

i!
, and (21)

DαJαv(x, t) = v(x, t). (22)

4. Numerical Implementation

In this section, we demonstrate the iterative method on some selected wave equations from the literature. For ease of comparison,
we compute the absolute errors Ei at t = T defined by

Ei = |v(xi,T ) − vn(xi,T )| , (23)

and compare with the existing results in the literature.

Example 4.1. Consider the Allen-Cahn equation [1, 24] with α = 1:

Dα
t v = vxx + v − v3, (24)

subject to initial condition:

v(x, 0) = −
1
2
+

1
2

tanh
(

221
625

x
)
, (25)

and the exact solution is

v(x, t) = −
1
2
+

1
2

tanh
(

221
625

x −
3
4

t
)
. (26)

Applying Jα on both sides of Eq. (24), then Eqs. (24) and (25) become:

v(x, t) = ℓ(v) + N(v) + h(x, t),

where

v0 = h(x) = −
1
2
+

1
2

tanh
(

221
625

x
)
, (27)

ℓ(v) = Jα (vxx + v) , and

N(v) = Jα(−v3).

Applying Eq. (10), we have

v1 = ℓ(v0) + N(v0)

=
tα

Γ(α + 1)

[
−

103
3125000

tanh
(

221x
625

)
+

3
8

tanh2
(

221x
625

)
+

103
3125000

tanh3
(

221x
625

)
−

3
8

]

= −
tα

Γ(α + 1)

 sech2
(

221x
625

) (
1171875 + 103 tanh

(
221x
625

))
3125000

 ,
(28)

4



Issa et al. / African Scientific Reports 3 (2024) 176 5

Table 1: Comparison of absolute errors for Example 4.1.

t = 0.001 t = 0.005 t = 0.009 t = 0.01
x present MVIA-II[1] present MVIA-II[1] present MVIA-II[1] present MVIA-II[1]

0.1 1.15 × 10−9 1.62 × 10−5 5.78 × 10−9 8.10 × 10−5 1.11 × 10−8 1.45 × 10−4 1.26 × 10−8 1.62 × 10−4

0.2 2.31 × 10−9 1.61 × 10−5 1.18 × 10−8 8.07 × 10−5 2.28 × 10−8 1.45 × 10−4 2.60 × 10−8 1.62 × 10−4

0.3 3.44 × 10−9 1.60 × 10−5 1.76 × 10−8 8.02 × 10−5 3.41 × 10−8 1.43 × 10−4 3.89 × 10−8 1.61 × 10−4

0.4 4.53 × 10−9 1.59 × 10−5 2.32 × 10−8 7.96 × 10−5 4.47 × 10−8 1.42 × 10−4 5.09 × 10−8 1.59 × 10−4

0.5 5.59 × 10−9 1.57 × 10−5 2.86 × 10−8 7.87 × 10−5 5.47 × 10−8 1.40 × 10−4 6.21 × 10−8 1.58 × 10−4

0.6 6.58 × 10−9 1.55 × 10−5 3.36 × 10−8 7.76 × 10−5 6.39 × 10−8 1.38 × 10−4 7.24 × 10−8 1.56 × 10−4

0.7 7.52 × 10−9 1.53 × 10−5 3.83 × 10−8 7.64 × 10−5 7.23 × 10−8 1.35 × 10−4 8.16 × 10−8 1.53 × 10−4

0.8 8.39 × 10−9 1.50 × 10−5 4.26 × 10−8 7.50 × 10−5 7.97 × 10−8 1.33 × 10−4 8.97 × 10−8 1.50 × 10−4

0.9 9.18 × 10−9 1.47 × 10−5 4.64 × 10−8 7.54 × 10−5 8.62 × 10−8 1.30 × 10−4 9.68 × 10−8 1.44 × 10−4

v2 = ℓ(v1) + N(v0 + v1) − N(v0)

= Jα [v1 + (v1)xx] + Jα
[
−(v0 + v1)3 + v3

0

]
=
−3t3αΓ(1 + 2α)
Γ(1 + α)2Γ(1 + 3α)


(
−

1
2
+

1
2

tanh
(

221x
625

)) sech4
(

221x
625

) (
1171875 + 103 tanh

[
221x
625

])2

9765625000000


+

t4αΓ(1 + 3α)
Γ(1 + α)3Γ(1 + 4α)

 sech6
(

221x
625

) (
1171875 + 103 tanh

(
221x
625

))3

30517578125000000000


−

t2α

4882812500000Γ(1 + 2α)
sech5

(
221x
625

) [
−241406250 cosh

(
221x
625

)
+120703125 cosh

(
663x
625

)
+ 686524746338 sinh

(
221x
625

)
+ 686645513117 sinh

(
663x
625

)]
.

(29)

Substituting Eqs. (27), (28), and (29) in Eq. (6), we obtained a series solution in the form:

V2 = v0 + v1 + v2

= −
1
2
+

1
2

tanh
(

221x
625

)
−

tα
(

sech2( 221x
625 )(1171875+103 tanh( 221x

625 ))
3125000

)
Γ(1 + α)

+
t4αΓ(1 + 3α)

Γ(1 + α)3Γ(1 + 4α)

sech6
(

221x
625

) (
1171875 + 103 tanh

(
221x
625

))3

30517578125000000000
−

3t3αΓ(1 + 2α)
(
−1 + tanh

[
221x
625

])
2Γ(1 + α)2Γ(1 + 3α)

sech
[

221x
625

]4 (
1171875 + 103 tanh

[
221x
625

])2

9765625000000

−
t2α sech

[
221x
625

]5

4882812500000Γ(1 + 2α)

(
−241406250 cosh

[
221x
625

]
+ 120703125 cosh

[
663x
625

]
+ 686524746338 sinh

[
221x
625

]
+686645513117 sinh

[
663x
625

])
.

(30)
More accurate results can be obtained by finding Vm, m = 3, 4, 5, · · · .
Table 1 is the absolute errors corresponding to Eq. (30) and corresponding figure is Figure 2, Figure 1 is the behaviour of exact

and its corresponding approximate solution for Example 4.1.

Example 4.2. Consider
Dα

t v = vxx + v − v3, with α = 1, (31)

subject to initial condition:

v(x, 0) =
(
1 + exp

(
−

1
√

2
x
))−1

, (32)

5
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Figure 1: Exact solution and its corresponding approximate solution for Example 4.1.

Figure 2: Absolute errors with different values of t.

and the exact solution is

v(x, t) =
(
1 + exp

(
−

1
√

2
x −

3
2

t
))−1

. (33)

Table 2 is the absolute errors and their corresponding results from the literature, while Figure 2 is the graph of the results obtained
in Table 2.

Example 4.3. Consider
Dα

t v = vxx + v − v2, (34)

when α = 1. Eq. (34) becomes Newell-Whitehead equation [25], having initial condition:

v(x, 0) =
(
1 + exp

(
3
√

10
x
))− 2

3

, (35)

6
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Table 2: Comparison of absolute errors for Example 4.2.

t = 0.001 t = 0.005 t = 0.009 t = 0.01
x present MVIA-II[1] present MVIA-II[1] present MVIA-II[1] present MVIA-II[1]

0.1 9.93 × 10−9 3.77 × 10−5 2.49 × 10−7 2.88 × 10−4 8.06 × 10−7 5.19 × 10−4 9.96 × 10−7 5.76 × 10−4

0.2 1.98 × 10−8 5.74 × 10−5 4.95 × 10−7 2.87 × 10−4 1.60 × 10−6 5.17 × 10−4 1.98 × 10−6 5.74 × 10−4

0.3 2.94 × 10−8 5.71 × 10−5 7.36 × 10−7 2.85 × 10−4 2.39 × 10−6 5.13 × 10−4 2.95 × 10−6 5.70 × 10−4

0.4 3.87 × 10−8 5.66 × 10−5 9.70 × 10−7 2.83 × 10−4 3.15 × 10−6 5.08 × 10−4 3.89 × 10−6 5.65 × 10−4

0.5 4.77 × 10−8 5.60 × 10−5 1.19 × 10−6 2.80 × 10−4 3.88 × 10−6 5.03 × 10−4 4.79 × 10−6 5.58 × 10−4

0.6 5.62 × 10−8 5.52 × 10−5 1.41 × 10−6 2.76 × 10−4 4.57 × 10−6 4.96 × 10−4 5.64 × 10−6 5.51 × 10−4

0.7 6.42 × 10−8 5.43 × 10−5 1.61 × 10−6 2.71 × 10−4 5.22 × 10−6 4.88 × 10−4 6.44 × 10−6 5.42 × 10−4

0.8 7.16 × 10−8 5.33 × 10−5 1.79 × 10−6 2.66 × 10−4 5.82 × 10−6 4.79 × 10−4 7.19 × 10−6 5.31 × 10−4

0.9 7.84 × 10−8 5.22 × 10−5 1.96 × 10−6 2.61 × 10−4 6.37 × 10−6 4.69 × 10−4 7.87 × 10−6 5.20 × 10−4

Figure 3: Absolute errors with different values of t for Example 4.2.

and the exact solution is

v(x, t) =
[
1
2

{
1 + tanh

(
−

3

2
√

10

(
x −

7
√

10
t
))}] 2

3

. (36)

Table 3 is the absolute errors as compared with the results obtained in the literature; and Table 4 is the absolute errors as the
values of t get flatter.

Example 4.4. Consider Eq. (34) with α = 1 subject to the initial condition:

v(x, 0) =
(
1 + exp

(
−

1
√

6
x
))−2

, (37)

and the exact solution is

v(x, t) =
(
1 + exp

(
1
√

6
x −

5
6

t
))−2

. (38)

7
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Table 3: Comparison of absolute errors for Example 4.3.

t = 0.1 t = 0.3 t = 0.5
x present MVIA-II[1] present MVIA-II[1] present MVIA-II[1]

0.1 1.15 × 10−5 9.26 × 10−6 1.12 × 10−4 3.86 × 10−5 1.61 × 10−3 1.62 × 10−3

0.2 1.2 × 10−5 1.14 × 10−5 2.75 × 10−4 1.52 × 10−4 2.68 × 10−3 1.87 × 10−4

0.4 4.90 × 10−6 1.27 × 10−5 2.17 × 10−4 2.92 × 10−4 1.32 × 10−3 1.67 × 10−3

0.6 1.30 × 10−5 1.32 × 10−5 3.06 × 10−4 3.63 × 10−4 1.01 × 10−4 2.61 × 10−3

0.8 1.30 × 10−5 1.28 × 10−5 3.60 × 10−4 3.65 × 10−4 2.20 × 10−3 2.93 × 10−3

1.0 1.31 × 10−5 1.18 × 10−5 3.62 × 10−4 3.13 × 10−4 2.63 × 10−3 2.71 × 10−3

Table 4: Absolute errors for Example 4.3 with nearly flat t.

x t = 0.001 t = 0.005 t = 0.009 t = 0.01

0 2.84 × 10−11 3.59 × 10−9 2.12 × 10−8 2.92 × 10−8

0.2 7.39 × 10−12 9.58 × 10−10 5.78 × 10−9 8.00 × 10−9

0.4 9.55 × 10−12 1.17 × 10−9 6.72 × 10−9 9.17 × 10−9

0.6 2.09 × 10−11 2.61 × 10−9 1.51 × 10−8 2.08 × 10−8

0.8 2.61 × 10−11 3.27 × 10−9 1.91 × 10−8 2.62 × 10−8

1.0 2.56 × 10−11 3.21 × 10−9 1.88 × 10−8 2.58 × 10−8

Figure 4: Comparison of the absolute errors at different values of t for Example 4.3.

Table 5 is the comparison of the absolute errors with the results obtained in the literature; and Table 6 is the absolute errors as the
values of t get flatter.

Example 4.5. Consider
Dα

t v = vxx + 6v − 6v2, (39)

with α = 1, we have Fisher equation [26], having initial condition:

v(x, 0) =
[
1 + exp(x)

]−2 , (40)

and the exact solution is
v(x, t) =

[
1 + exp(x − 5t)

]−2 . (41)

8
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Table 5: Absolute errors for Example 4.4.

t x MVIA-II[1] VIM [27] present

0 1 2.50 × 10−16 0 2.78 × 10−17

0.2 1 5.6 × 10−7 2.1 × 10−6 4.8 × 10−5

0.4 1 8.3 × 10−7 5.3 × 10−5 3.1 × 10−4

0.6 1 1.4 × 10−5 3.2 × 10−4 8.2 × 10−4

0.8 1 5.8 × 10−5 1.1 × 10−2 9.1 × 10−4

1.0 1 1.6 × 10−4 2.6 × 10−2 9.5 × 10−4

Table 6: Absolute errors for Example 4.4 with nearly flat t.

x t = 0.001 t = 0.005 t = 0.009 t = 0.01

0 2.41 × 10−12 2.98 × 10−10 1.72 × 10−9 2.36 × 10−9

0.2 3.24 × 10−12 4.03 × 10−10 2.33 × 10−9 3.20 × 10−9

0.4 4.14 × 10−12 5.18 × 10−10 3.00 × 10−9 4.12 × 10−9

0.6 5.13 × 10−12 6.39 × 10−10 3.71 × 10−9 5.08 × 10−9

0.8 6.12 × 10−12 7.62 × 10−10 4.42 × 10−9 6.07 × 10−9

1.0 7.08 × 10−12 8.82 × 10−10 5.13 × 10−9 7.03 × 10−9

Table 7: Absolute errors for Example 4.5 with t = 0.4.

x MVIA-II[1] ADM [26] MVIM [26] present

0 3.95 × 10−2 5.75 × 10−2 5.02 × 10−2 2.42 × 10−2

0.2 3.01 × 10−2 1.62 × 10−1 5.27 × 10−2 4.24 × 10−2

0.4 1.47 × 10−2 1.39 × 10−1 4.12 × 10−2 4.25 × 10−2

0.6 6.89 × 10−3 1.52 × 10−1 2.25 × 10−2 2.60 × 10−2

0.8 1.74 × 10−2 1.44 × 10−1 5.29 × 10−3 1.72 × 10−3

1.0 1.81 × 10−2 1.19 × 10−1 4.24 × 10−3 3.40 × 10−2

Table 8: Absolute errors for Example 4.5 with nearly flat t.

x t = 0.001 t = 0.005 t = 0.009 t = 0.01

0 5.14 × 10−10 6.11 × 10−8 3.37 × 10−7 4.56 × 10−7

0.2 9.87 × 10−10 1.20 × 10−7 6.77 × 10−7 9.22 × 10−7

0.4 1.50 × 10−9 1.84 × 10−7 1.06 × 10−6 1.44 × 10−6

0.6 1.96 × 10−9 2.42 × 10−7 1.39 × 10−6 1.91 × 10−6

0.8 2.27 × 10−9 2.81 × 10−7 1.63 × 10−6 2.23 × 10−6

1.0 2.39 × 10−9 2.98 × 10−7 1.73 × 10−6 2.38 × 10−6

Table 7 shows the comparison of the absolute errors relative to the results from the literature; and Table 8 shows the absolute
errors as the values of t get flatter.
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5. Discussion of results and conclusion

5.1. Discussion of results

Tables 1-3, 5 and 7 are the absolute errors obtained from Examples 4.1-4.5, respectively, and their corresponding results from the
literature, while Tables 4, 6 and 8 are the absolute errors obtained when the values of t are getting flatter (that’s a very small value
of t). Figures 1 is the exact and approximate solutions for Example 4.1, while Figures 2 and 3 shows the relationship between the
absolute errors at different values of t for Examples 4.1 and 4.2 respectively. Figure 4 shows the comparison of the absolute errors at
different values of t, for Example 4.3.

5.2. Conclusion

In this paper, we have studied and analysed a new iterative method for solving time-fractional non-linear equations. The Examples
considered are Allen-Cahn, Newell-Whitehead, and Fisher equations by putting α = 1. We obtained an approximate solution for
each example, and computational results were obtained and tabulated. Obviously, from the tables of results, the proposed method
is effective and accurate for solving Allen-Cahn, Newell-Whitehead, and Fisher equations. All computations were done using the
Mathematica package, and the graphs were plotted using the MATLAB package. The scheme is also applicable to fractional form by
changing the value of α in the equations Section 3 to enhance further study.
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