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A fifth order block methods for solving second-order stiff
ordinary differential equations using trigonometric functions and
polynomial function as the basis function
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Abstract

The numerical solution of second-order ordinary differential equations (ODEs) is examined in this work through a four-step linear multistep method.
It employs a combination of trigonometric and polynomial functions as the approximate solution to the general second-order ordinary differential
equations (ODEs). The method was developed using interpolation and collocation techniques. This methodology involves interpolating the basis
function at two points and subsequently collocating it across all points, ensuring a robust scheme. To assess its efficacy, we solved three initial
value problems (IVPs) associated with stift differential equations. Through this examination, we established the method’s core characteristics:
consistency, zero stability, and consequently convergence. This thorough analysis demonstrates its reliability and suitability for resolving second-
order ordinary differential equations. The comparison of our newly derived block method against existing approaches reveals its superiority. Our
method’s performance, evaluated across a spectrum of stiff second-order ordinary differential equations, surpasses the outcomes obtained from
established authors. This substantiates its efficiency and effectiveness in addressing these mathematical challenges. This study marks a significant
advancement by introducing a robust approach that not only accurately solves second-order ordinary differential equations but also streamlines the
computational process. By integrating trigonometric and polynomial functions and leveraging interpolation and collocation techniques, our method
stands out for its accuracy, stability, and convergence properties, offering a promising avenue for future research in this domain.
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1. Introduction

Presented in this paper is the numerical solution of general second-order ordinary differential equations initial value problems
(IVP) of the form:

' = f,p,y), y@ =no, y(a)=m, x¢€la,b) (1)

These second-order ODEs, which are used to solve numerous problems in physical sciences and engineering, are used to model a
variety of natural processes. Many forms of the equation (1) may be difficult to solve analytically. As a result, numerical systems
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are frequently developed to solve them. Because a lot of problems of the form (1) are difficult to solve, approximate numerical
integrations are commonly utilized to solve them. These second-order ODEs are frequently transformed to similar first-order ordinary
differential equations and solved using the appropriate method. Among others who have discussed the reduction technique are Refs.
[1-3].

To circumvent the problem of changing equation (1) to an equal system of first order ODEs, scholars like Awoyemi & Olanegan et
al. [3,4] proposed a linear multistep technique for solving equation (1) directly. According to Ref. [3], the continuous linear multistep
method outperforms the discrete method in terms of error estimation by providing a simplified coefficient for more analytical work
at various points and ensuring easy appropriation of solution at all interior points of the integration interval.

Authors such as Omar & Kuboye [6] and Onumanyi et al. [7] have presented continuous linear multistep techniques. These
scholars used the predictor-corrector and Taylor series expansion to acquire starting values for their approaches. The predictor-
corrector approach is expensive, according to Ref. [8], since subroutines are difficult to construct due to the specific methods
necessary to offer beginning values and adjust the step size, resulting in longer computer time and more human effort. The correctors
are not in the same order as the predictors. As a result, the accuracy of the method is very poor.

To rise above the drawbacks of the reduction and predictor-corrector methods, researchers such as Refs. [8-10] developed the
block technique. The aim of this paper is to develop and implement a new continuous four step linear multistep block method
that is zero-stable, consistent, and convergent for direct and accurate solution of second-order ODEs of initial value problems using
trigonometric and polynomial functions as the basis function.

2. Derivation of the scheme

In deriving this method, basis function of the form,

4
y(x) = Z a,x" + as sin(wx) + ag cos(wx), 2)
n=0

is considered as the approximate solution to equation (1). The second derivative of equation (2) is obtained as:

4
y” (x) = Z n(n - Da,x" 2 - as (wz) sin(wx) — ag(w?) cos(wx). 3)
n=2

Collocating equation (3) at x = Xx,4;, j = 0(1)4 and interpolating equation (2) at x = Xx,,;, j = 0,1. These equations are then
combined together to give a non linear system of equations of the form:

2 3 4

[ 1 x, x; x, X, sin wx,, COS WX, 1M a | [
1 2 3 4 :
Xn+l X4 X X1 SIN WX 41 COS WX, 41 aj Yn+l
0 O 2 6x, 12x3 —w? sin wx, —w? cos wx, a fu
0 0 2 6xur 1202 —wPsinwx, —w? COS WXy az | =1 forr | 4)
0 0 2 6xp 12x2, —wsinwx,o —wicoswxo || as o2
0 O 2 6x,43 Iin 3 —Ww?sinwx,.3  —W? COS WX,43 as o3
L0 O 2 Oxy4 12x,21 " —w2sinwx,ps —w2coswxya || as | | fusa |

Gaussian elimination technique is used in finding the values of a,s in equation (4) which are then substituted into equation (2) to
produce a continuous implicit method of the form

k k
YO = Y @)y + {Z Bi(0) fus jl : 5)
j=0 j=0

where the coeflicients of y,; and f,,; gives
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ay = -1,
(0] = 2,
PR sin(wh)2w? — 1312w? sin(2wh) — 36 sin(wh) + 36 sin(wh) — 12 sin(3wh)
o= 60 sin(wh)w? + 12w? sin(3wh) — 48w? sin(2wh) ’
g = 33 sin(wh)h>w? — 12h*w? sin(2wh) + 13w?h? sin(3wh) + 84 sin(wh) — 96 sin2wh) + 36 sm(3wh)
T 60 sin(wh)w? + 12w? sin(3wh) — 48w? sin(2wh)
5 sin(wh)h?w? — w?h? sin(Bwh) — 17h*w? sin(2wh) — 18 sin(3wh) — 18 sin(wh) + 36 sm(2wh)
2 30 sin(wh)w? — 24w? sin(2wh) + 6w? sin(3wh)
B 21 sin(wh)i2w? + 121*w? sin(2wh) + w?h? sin(3wh) — 36 sin(wh) + 12 sin(3wh)
3 60 sin(wh)w? + 12w2 sin(3wh) — 48w2 sin(2wh) :
s —10 sin(wh)h*>w? — h*w? sinQwh) + 24 sin(wh) — 12 sin(2wh) ©)
4 20 sin(wh)w? + 4w?sin(3wh) — 16w? sin(2wh)
Letting u = wh, the converted coefficients of the method in series form is given as
19 221 233 199
- e 3y 2t 1216 + 0d).
Po 220" " 60ag0" “ T 1814400 “ T 53222400 u”+ 06r)
s, 195, 9 54 2.6 8
Bro= 3" = 7560" " ~ 226800 “ 6652800h u”+ 0,
7 19 83
= B Hu 2t b 8
pa 20" * 016" ™ * 300a00" “ * To7ia0" ¥+ 0w,
1 2 1 1
— _hZ h22 h24+ l’l26+0 8,
Ps 60" " 925" ~5g700" “ T aissoo” ¥ T OW)
1 31 67 109
- e 22 Rt — 126 + 0Gb), 7
B 240" 60480 1814400 * ~ 53202800" * +OW) @
or yn+3,
ay = -2,
(07 = 3,
By = 9h*w? sinQwh) — 6 sin(wh)h*w? — 20 sin(2wh) + 16 sin(wh) + 8 sin(3wh)
o= 16w? sin(2wh) — 20 sin(wh)w? — 4w? sin(3wh) ’
5 - 8h2w? sin(2wh) — 37 sin(wh)h2w? — Ow2h? sin(3wh) + 48 sin(2wh) — 24 sin(wh) — 24 sin(3wh)
b= 16w2 sin(2wh) — 20 sin(wh)w? — 4w? sin(3wh) :
5 = sin(wh)h?>w? — w?h? sin(3wh) + 19h%w? sinQwh) — 12 sin(@wh) + 12 sin(3wh) — 12 sm(wh)
27 8w?2 sin(2wh) — 10 sin(wh)w? — 2w? sin(3wh)
g 29 sin(wh)h>w? + w?h? sin(3wh) + 8h*w? sin(2wh) — 56 sin(wh) + 8 sin(3wh) + 16 s1n(2wh)
3 =

20 sin(wh)w? + 4w? sin(3wh) — 16w? sin(2wh)

—10 sin(wh)>w? — h*w? sin(2wh) + 24 sin(wh) — 12 sin(2wh)

= . 8
Ba 60 sin(wh)w? + 12w? sin(3wh) — 48w? sin(2wh) ®)

The converted coefficients of the method in series form is given as

L Ry %h%ﬁ + 008,

b= 2”2 B %hzuz ) 15?200”2”4 9856Oh2u6 + 0,

P = fTZ)h2 " 3220’“ 3316100}’2“4 B %hz'f +0),

s = %hz B 5(1)zlxohz”2 * 151;00’12”4 * %hzuﬁ +00e),

Pa = _%hz - %W - 60461;00’12”4 - 1772?09800}‘2”6 + 0w, ®



Enoch & Alakofa | African Scientific Reports 3 (2024) 156 4

for y,14,
ayg = —3,
a; = 4,
2 sin(wh)h>w? — Th*w? sin(2wh) — 6 sin(wh) — 6 sin(3wh) + 12 sin(2Qwh)
Po = 10 sin(wh)w? + 2w? sin(3wh) — 8w? sin(2wh) ’
35 sin(wh)l?w? + Tw?h? sin(3wh) — 4h*w? sinQwh) + 4 sin(wh) + 20 sin(3wh) — 32 sin(2wh)
B = 10 sin(wh)w? + 2w? sin(3wh) — 8w? sin(2wh) ’
B h? sin(3wh) — 19h*w? sin(2wh) — sin(wh)h*w? — 12 sin(3wh) + 12 sin(2wh) + 12 sm(wh)
P = w2 sin(3wh) + 5 sin(wh)w? — 4w? sin(2Qwh)
_ —4R*w? sin(2wh) — 31 sin(wh)h*w? — 3w?h? sin(3wh) + 36 sin(wh) — 12 sm(3wh)
B = 8w? sin(2wh) — 10 sin(wh)w? — 2w? sin(3wh)
3h2w? sinwh) + 6 sin(Wh)h*w? + 4 sin(2wh) — 14 sin(wh) + 2 sm(3wh)
Ba = 8w2 sin(2wh) — 10 sin(wh)w? — 2w? sin(3wh) (10)
The converted coefficients of the method in series form is given as
Po = %hz " 2(1)?6}1 2 30§43L00h2”4 " 197]120}’2”6 + 0w,
83 37 29 9
A= 30 260"~ 3700" ™ ™ 3326400" 0w
P2 = ;_(7) T 1Zzoh2”2 " 1618100h2u4 B 443159200}’2”6 + 0w,
A= %hz ) % e 941'50h2 "+ goso” T OW
Fs = 1;_0]12 " %hz"z B 30;47100 K 26611713200h2u6 + 06, an
Equation (2) was differentiated and evaluated at all points which gives the following coefficients and its series form.
Differentiating and evaluating at x = x, gives y,,.
— 1
@y = E’
_ 1
a; = Z’
~  —9R*w?sin(2wh) + 14 sin(wh)h®w?* — 8wh cos(3wh)
o = 32hw? sin(2wh) — 8hw? sin(3wh) — 40hw? sin(wh)
8wh cos(2wh) — 16 sin(2wh) + 8 sin(3wh) + 8 sin(wh)
32hw? sin(2wh) — 8hw? sin(B3wh) — 40hw? sin(wh)
~ —20h%w? sin(2wh) + 27w?h? sin(3wh) + 7 sin(wh)h>w?
P = 96hw? sin(2wh) — 24hw? sin(3wh) — 120hw? sin(wh)
N 72wh cos(3wh) — 24 cos(wh)hw — 48wh cos(2wh) + 120 sin(2wh) — 72 sin(3wh) — 24 sin(wh)
96hw? sin(2wh) — 24hw? sin(3wh) — 120hw? sin(wh)
N T2wh cos(3wh) — 24 cos(wh)hw — 48wh cos(2wh) + 120 sin(2wh) — 72 sin(3wh) — 24 sm(wh)
96hw? sin(2wh) — 24hw? sin(3wh) — 120hw? sin(wh)
~  —11w?h*sinBwh) + 11 sin(wh)h®w? — Th*w? sin(2wh) — 36wh cos(3wh)
P = 48hw? sin(2wh) — 12hw? sin(3wh) — 60hw? sin(wh)
36 cos(wh)hw + 36 sin(3wh) — 36 sin(wh) — 36 sin(2wh)
48hw? sin(2wh) — 12hw? sin(3wh) — 60hw? sin(wh)
—~ ~Tw?h? sin(3wh) — 20h>w? sin(2wh) + 13 sin(wh)h>w? — 48wh cos(2wh)
s = 24hw? sin(3wh) + 120hw? sin(wh) — 96hw? sin(2wh) ’
72 cos(wh)hw — 24wh cos(3wh) + 24 sin(3wh) + 24 sin(2wh) — 120 sin(wh)
24hw? sin(3wh) + 120hw? sin(wh) — 96hw? sin(2wh) ’
-~ Th*w? sin(Qwh) — 2 sin(wh)h>w? + 24wh cos(2wh) — 24 cos(wh)hw — 24 sin(2wh) + 48 sm(wh)
i = 24hw? sin(3wh) + 120hw? sin(wh) — 96hw? sin(2wh)
(12)
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The converted coefficients of the method in series form is given as

Bo=-
Fio

B2 =

B3 =
[’g:l:

Differentiating and evaluating at x = x,, gives y’

1

367 199, . 1543, 28

1420 ~ 24192"™ ~ 3628800 9123840

3 337 457 289
Zh h 2 4 l’l 8
8" T 15120™ * 233600 ™ " qazsz00 ™ T OW):

47, 353, 19 ., 569

hu® + 0ud),

_ _ S 8
220"~ 20160™ ~ 20320"™ ~ 53220800 T OW:

29 1 43 127
-+ 2 4 _ h 6 18] 8 ,

360 945 113200 ~ 2494800 ™ +OW)

7 289 139 2899
L hii? hit + ——2 B2 + OGd).
230" ¥ 120060™ ¥ 518200™ T Toeadasoo” * T W)

n+l1*

. 26sin(wh)R2w? — 19h2w? sin(2wh) — 24 cos(wh)hw

Bo =

120hw? sin(wh) — 96hw? sin(2wh) + 24hw? sin(3wh)
24wh cos(2wh) —

24 sin(wh) + 48 sin(2wh) — 24 sin(3wh)

120Aw? sin(wh) — 96hw? sin(2wh) + 24hw? sin(3wh)

E 23 sin(wh)h?w? — 16h*w? sin(@wh) + 19w?h? sin(3wh) + 48 cos(wh)hw — 72wh cos(2wh)

1=

120Aw? sin(wh) — 96hw? sin(2wh) + 24hw? sin(3wh)

2dwh + 24 sin(wh) — 120 sin(2wh) + 72 sin(3wh)

+ -
120Aw? sin(wh) —

96hw? sin(2wh) + 24hw? sin(3wh)’

~  5sin(wh)h’*w? — 5w?h? sin(3wh) — 13h*w? sin(2wh)

H =

60hw? sin(wh) — 48hw? sin(2wh) + 12hw? sin(3wh)
36wh cos(2wh) —

36wh — 36 sin(3wh) + 36 sin(wh) + 36 sin(2wh)

60hw? si

n(wh) — 48hw? sinwh) + 12hw? sin(3wh) ’

—  —16h*w? sin(2wh) — 3w?h? sin(3wh) — 7 sin(wh)h>w?

B3 =

96hw? sin(2wh) — 24hw? sin(3wh) — 120hw? sin(wh)
24wh cos(2wh) + 48 cos(wh)hw — T2wh — 24 sin(2wh) — 24 sin(3wh) + 120 sin(wh)

96hw? sin(2wh) — 24hw? sin(3wh) — 120hw? sin(wh)

—~ 2w? sin(@wh) + 2 sin(wh)h2w? — 8 cos(wh)hw + 8wh + 8 sin(2wh) — 16 s1n(wh)

,34—

32hw? sin(2wh) — 8hw? sin(3wh) — 40hw? sin(wh)

The converted coefficients of the method in series form is given as

= 7220" T 20160 201600 53222400
= 15" 2320™ * 507200™ * 26611200

T 1440 T 120960 T 725760 " T 63866880

3, 7L, 1439 157

32" 120960 3628800 5068800

47 97 , 83 ., 317 .

o 22— - h

90"~ g0as"™ ~ 907200™ ~ 79833600 O
(239, , 89 ., 143

hu® + 0ud),

hub + 0ud),

1 1 319 1277
2 4 hu® + 0ud),

17 253, 181 ., 1681

Pu® + 0ad).

(13)

(14)

5)
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Differentiating and evaluating at x = x,, gives y/ _,.

- 1

@ = _Z’

1

a E’

E _ 29°%w? sin2wh) — 22 sin(wh)h*w? — 24wh cos(wh) + 24wh — 48 sin(2wh) + 24 sin(3wh) + 24 sm(wh)
0 =

96hw? sin(2wh) — 24hw? sin(3wh) — 120hw? sin(wh)

—~  29w?h? sin(3wh) + 113 sin(wh)h?>w? — 28h*w? sin(2wh) — 48wh cos(wh) + 48wh + 72 sin(3wh) + 24 sin(wh) — 120 sm(2wh)
Br= 24hw? sin(3wh) + 120hw? sin(wh) — 96hw? sin(2wh)

—~ h? sin(Bwh) — sin(wh)h>w? — 19h*w? sin(2wh) — 12 sin(3wh) + 12 sin(wh) + 12 s1n(2wh)

P2 = 4hw? sin(3wh) + 20hw? sin(wh) — 16hw? sin(2wh)
- w2h? sin(3wh) + 85 sin(wh)h>w? + 28h*w? sin(2wh) + 48wh cos(wh) — 48wh + 24 sin(3wh) — 120 sin(wh) + 24 sm(2wh)
T 24hw? sin(3wh) + 120hw? sin(wh) — 96hw? sin(2wh)
7~ —34 sin(wh)2w? — B2w? sin(2wh) — 24wh cos(wh) + 24wh + 48 sin(wh) — 24 sin(2wh) 6
‘7 24hw? sin(3wh) + 120hw? sin(wh) — 96hw? sin(2wh) '
The converted coefficients of the method in series form is given as
_ 97 1 439 7211
_ Bt —— i — 4 6 4 Od),
Po 120" " 520™ ~ 3628800 ~ 319334400 + W)
— 36l 29 17, 1817 )
A= 35" 500™ * 50720™ * 3016800 T O
_ 3753 11 19
= —h ]’l 2 4 - h 6 0 s ’
pr 80" " 6720 T 67200 17740800 u”+ 00r’)
~ B 1, 23 ., )
B = 360"~ 210™ ~ 56700 ™ 22680h” 0w,
_ 1 43 1 70
By = —h+——hu’*+ 0 hu* + 9 +0@ud). (17)

288 40320 518400

Differentiating and evaluating at x = x,, gives y/ 5.

1
@y = _;t’
1
a; = E’
-~ Ol*w? sin(@wh) + 2 sin(wh)h>w? + 8wh cos(wh) — 8wh — 16 sin(2wh) + 8 sin(3wh) + 8 s1n(wh)
Po = 32hw? sin(2wh) — 8hw? sin(3wh) — 40hw? sin(wh)
~  16R*w? sin(Qwh) — 27w?h* sin(Bwh) — 191 sin(wh)h*w? — 24wh cos(2wh) — 48wh cos(wh)
B = 96hw? sin(2wh) — 24hw? sin(3wh) — 120hw? sin(wh)
N =24 sin(wh) + 72wh + 120 sin(2wh) — 72 sin(3wh)
96w sin(2wh) — 24hw? sin(3wh) — 120hw? sin(wh)’
. 1017%w? sin(2wh) — 11w?h? sin(3wh) + 11 sin(wh)h*w?
P = 48hw? sin(2wh) — 12hw? sin(3wh) — 60hw? sin(wh)
N 36wh cos(2wh) — 36wh — 36 sin(2wh) + 36 sin(3wh) — 36 sin(wh)
48hw? sin(2wh) — 12hw? sin(3wh) — 60hw? sin(wh) ’
G- O sinQwh) — 1R sinGwh) - 175 sinGuh)iw? = 72wh cos(2wh)

96hw? sin(2wh) — 24hw? sin(3wh) — 120hw? sin(wh)
48wh cos(wh) + 24wh — 24 sin(2wh) — 24 sin(3wh) + 120 sin(wh)
96hw? sin(2wh) — 24hw? sin(3wh) — 120hw? sin(wh) ’
—~ 111%w? sin(@wh) + 38 sin(wh)h>w? + 24wh cos(2wh) — 24wh cos(wh) + 24 sin(2wh) — 48 sin(wh)

= . 18
B 96hw? sin2wh) — 24hw? sin(3wh) — 120hw? sin(wh) (18)
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The converted coefficients of the method in series form is given as

Differentiating and evaluating at x = x,, gives y

@o

a

Bo

Bi

B2

Bs

B

Po = % i 125079160 W+ 36121808300 u'+ 3198323>941400h”6+0(”8)’

o= % B 6(6)28 w - 95712700 = 126579200h”6 + 0w,

2 276(3) " 2()71960 W= 20?200 w' - 532825—27400]”‘6 + 0w,

B = gh * 3(1)24710]“‘2 - 181134140 u'+ 79243?200}’”6 +06,

Gl M9 L 66T s (19)

7480 T 17280 " T 3628800 T 21288960

7
n+4°

37h*w? sin(2wh) + 10 sin(wh)h*w? + 24wh cos(2wh) — 24wh cos(wh)
96hw? sin(2wh) — 24hw? sin(3wh) — 120hw? sin(wh)
. —48 sin(2wh) + 24 sin(3wh) + 24 sin(wh)
96hw? sin(2wh) — 24hw? sin(3wh) — 120hw? sin(wh)’
—20R*w? sinQwh) — 3Tw?h2 sin(3wh) — 185 sin(wh)h*w? — 48wh cos(2wh)
96hw? sin(2wh) — 24hw? sin(3wh) — 120hw? sin(wh)
N T2wh cos(wh) — 24wh cos(3wh) + 120 sin(2wh) — 72 sin(3wh) — 24 sin(wh)
96hw? sin(2wh) — 24hw? sin(3wh) — 12072 sin(wh) .
121h2w? sin2wh) + Swh? sin(3wh) — 5 sin(wh)h2w? — 36wh cos(wh)
48hw? sin(Qwh) — 12hw? sin(3wh) — 60hw? sin(wh)
36wh cos(3wh) — 36 sin(2wh) + 36 sin(3wh) — 36 sin(wh)
48hw? sin2wh) — 12hw? sin(3wh) — 60hw? sin(wh)
20h*w? sinwh) — 57w?h? sin(3wh) — 205 sin(wh)h*w? + 48wh cos(2wh)
96hw? sin(2wh) — 24hw? sin(3wh) — 120hw? sin(wh)
24wh cos(wh) — T2wh cos(3wh) — 24 sin(wh) — 24 sin(3wh) + 120 sin(wh)
96hw? sin(2wh) — 24hw? sin(3wh) — 120hw? sin(wh) ’
19h%w? sin(@wh) — 10 sin(wh)h>w? + 8wh cos(3wh) — 8wh cos(2wh) + 8 sin(2wh) — 16 sin(wh)
32hw? sin(2wh) — 8hw? sin(3wh) — 40hw? sin(wh) ’

(20)

The converted coeflicients of the method in series form is given as

9 29
—h hu? - hu* -

160" T 120060 T 125152 T 3225600
377 5 73 2089
—h- hu hu® + owd),
360"~ 132 T 253600 * 39916800 T OW)
35 611, 23 13 .
> h

23" 20160™ * 28800 * 1520640 T OW:
161, 31,, 139 ., 53 .
B = 130" 955™ ~ T3a00™ ~ 8316007 T OW):
_ 469 1313, 1741, 9721

Be = 140"+ 120060™ * 3628800 T 319334400

1
3 4 hu® + 0@d),

B(\):

B =

B\z:

ub + 0ud). (21)

3. Basic properties of the method

The implicit schemes from equation (6)-(13) derived are discrete schemes belonging to the class of LMMs of the form

k k
Z AjYnyj = n? Zﬁjfmj- (22)
j=0 j=0
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Following Refs. [2, 11], we define the Local Truncation Error(LTE) associated with equation (22) by difference operator;

k
Liy(); bl = ) [arjy(x + jh) = 2By (x + jh)]. (23)
Jj=0
Expanding (23) by Taylor series, we have
LIy(x); k] = Coy(x0) + C1hy' (x) + - - - + CghTy P () + - -, (24)
where
C() = aqytat+tay+---+ag,
Ci = a;+2a+---+kay,
1
G = 5(0/1 +2m 4+ ) = Bo+ i+ B+ + o),
c, = ! 27 kP !
p = IT!((I]+ ay+ -+ ak)_(q—Z)!

(B1 + 297y + -+ k1Br), q = 3.

3.1. Order and error constant

The LMM (22) is said to be of order pif Co = C; = C, = -+ = C, = Cpy1 = 0 and Cp4» # 0 is the error constant. Equation
(6) has order p = 5 and error constant given by C,,» = 2411—0. Equation (8) has order p = 5 and error constant given by Cp,.» = ﬁ,
Equation (10) has order p = 5 and error constant given by C,,.» = ﬁ and Equation (12) has order p = 5 and error constant given by
Cpoo = L.
3.2. Zero stability
Theorem 1. Zero-stability [1, 11]: A block method is said to be zero stable if as h — O, the roots r;, j = 1(1)k of the first character-

istic polynomials p(r) = 0 that is
p(r) = det| )" AOR] =0,

satisfying |R| < 1, must be simple.
p(2) = det[zA© — AD = 0],

1000 00 0 1
Jo ool fooo | |
0010 0001
000 1 000 1
2000 000 1
0z 00f 000 1|_,
00 z 0 000 1
000 z 000 1

Z2z-1=0, z=1,0,0,0

since |z =1,0,0,0 |< 1, the method is stable.

3.3. Consistency
According to Ref. [12], a numerical method is said to be consistent if the following conditions are satisfied.
(1) The order of the method must be greater or equal to 1. i.e. p > 1;
(i) E_’;zoaj =0;
(iii) p(r) = p'(r) = 0;
@iv) p”(r) = 2lo(r).

where p and o are the first and second characteristics polynomial of equation (5). When these conditions are applied to the main
scheme, it is found to be consistent.
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Table 1: Numerical results and the absolute error for test problem 1.

X Exact Computed Error
0.1 -0.10517091807564762 -0.10517091807437191 1.27571E-12
0.2 -0.22140275816016983  -0.22140275815480269  5.36714E-12
0.3 -0.34985880757600310 -0.34985880756315065  1.285245E-11
0.4 -0.49182469764127032 -0.49182469761687007  2.440025E-11
0.5 -0.64872127070012815 -0.64872127065934589  4.078226E-11
0.6 -0.82211880039050897 -0.82211880032762140  6.288757E-11
0.7 -1.01375270747047652 -1.01375270737873767  9.173885E-11
0.8 -1.22554092849246760 -1.22554092836395704 1.2851056E-10
0.9 -1.45960311115694966 -1.45960311098240009 1.7454957E-10
1.0 -1.71828182845904524 -1.71828182822764679 2.3139845E-10

X

Error in new method  Error in Ref. [13]

Error in Ref. [14]

Error in Ref. [15]

0.1 1.27571E-12 - 6.899835E-11 4.462679E-11
0.2 5.36714E-12 3.46017000E-09 1.525099E-10 9.864032E-11
0.3 1.285245E-11 5.67600300E-09 2.528244E-10 1.635218E-10
04 2.440025E-11 7.64127000E-09 3.725524E-10 2.409591E-10
0.5 4.078226E-11 1.04971347E-08 5.146680E-10 3.328765E-10
0.6 6.288757E-11 1.44950355E-08 6.825557E-10 4.414623E-10
0.7 9.173885E-11 1.87822380E-08 8.800651E-10 5.692067E-10
0.8 1.2851056E-10 2.27988702-08 1.111569E-09 7.189380E-10
0.9 1.7454957E-10 2.82582100E-08 1.382034E-09 8.938681E-10
1.0 2.3139845E-10 3.55473540E-08 1.697095E-09 1.097642E-09

3.4. Convergence

Table 3: Numerical results and the absolute error for test problem 2.

X Exact Computed Error
0.01 1.01979867335991086 1.01979867335968196  2.2890E-13
0.02 1.03918944084761210 1.03918944084696135  6.5075E-13
0.03 1.05816454641464877 1.05816454641402239  6.2638E-13
0.04 1.07671640027179207 1.07671640027015420  1.63787E-12
0.05 1.09483758192485392 1.09483758192097119  3.88273E-12
0.06 1.11252084314278561 1.11252084313620862  6.57699E-12
0.07 1.12975911085687365 1.12975911084716780  9.70585E-12
0.08 1.14654548998987291  1.14654548997661875 1.325416E-12
0.09 1.16287326621394559 1.16287326619673912  1.720647E-11

0.1  1.17873590863630285 1.17873590861475587 2.154698E-11

Theorem 2. [11]: The necessary and sufficient condition for a linear multistep method to be convergent is for it to be consistent and
zero stable. Thus our block method is convergent since it is zero stable and consistent.

4. Implementation and numerical examples

This section examines the performance of the new method by applying it to some second-order ODEs . The test problems out-
comes are displayed in tabular form.
Error= |exact solution — computed solution| .

Test Problem 1:
Yy =y, y0)=1,y0)=0, h=0.1.

Exact solution: y(x) = 1 — exp(x).



Table 4: The comparison of error in new method and some existing methods for test problem 2.
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X Error in new method  Error in Ref. [16]

0.01 2.2890E-13 3.409E-11
0.02 6.5075E-13 3.239E-11
0.03 6.2638E-13 3.465E-11
0.04 1.63787E-12 2.40E-13
0.05 3.88273E-12 1.780E-12
0.06 6.57699E-12 7.467E-11
0.07 9.70585E-12 3.904E-11
0.08 1.325416E-12 4.132E-11
0.09 1.720647E-11 1.197E-10
0.1 2.154698E-11 8.342E-11

Table 5: Numerical results and the absolute error for test problem 3.

X Exact Computed Error
0.01 0.904837418035959573  0.904837419827875764  1.791916191E-9
0.02 0.818730753077981859 0.818730757391773436  4.313791577E-9
0.03 0.740818220681717866  0.740818227549595599  6.867877733E-9
0.04 0.670320046035639301  0.670320054867431370  8.831792069E-9
0.05 0.606530659712633424  0.606530682641211184  2.2928577760E-8
0.06 0.548811636094026433  0.548811675353608366  3.9259581933E-8
0.07  0.496585303791409515 0.496585361588883748  5.7797474233E-8
0.08 0.449328964117221591  0.449329042672387956  7.8555166365E-8
0.09  0.406569659740599112  0.406569761324812764 1.01584213652E-7
0.1 0.367879441171442322 0.367879568145210102  1.26973767780E-7

Table 6: The comparison of error in new method and some existing methods for test problem 3.

Test Problem 2:

X Error in new method  Error in Ref. [17]

0.01 1.791916191E-9
0.02 4.313791577E-9
0.03 6.867877733E-9
0.04 8.831792069E-9
0.05  2.2928577760E-8
0.06  3.9259581933E-8
0.07  5.7797474233E-8
0.08  7.8555166365E-8

1.29E-8
3.01E-8
5.04E-8
9.32E-10
1.40E-7
1.90E-7
2.58E-7
3.32E-7

0.09  1.01584213652E-7 -
0.1 1.26973767780E-7 -

Y +22y=0, y0)=1,y(0)=2, 1=2.

Exact solution: y(x) = cos(2x) + sin(2x).

Test Problem 3:

¥ =100y = 0, y(0) =1, y'(0) = =10, h = 0.01.

Exact solution: y(x) = exp(—10x).

Table 1 shows the results generated for test problem 1 using the proposed method. Table 2 shows the comparison of the results of

our method with that of Refs. [13—15]. It is obvious that our method is better in accuracy and also efficient than Refs. [13, 13, 15].

Table 3 represents the outcomes produced for test problem 2 utilizing the proposed method. Meanwhile, Table 4 demonstrates a

favourable comparison of the proposed method with the one in Ref. [16].

Table 5 presents the results obtained for test problem 3 using the proposed method. Table 6 shows the comparison of the proposed

method with Ref. [17]. It is observed that our method is more efficient and accurate than that of Ref. [17].
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The implementation of the new scheme on three specific examples demonstrates its favourable comparison with exact solutions

in Table 2 and Table 6 while the result in Table 4 competes well with the existing results.

5. Conclusion

Utilizing collocation and interpolation techniques, a novel class of continuous second derivative block methods for solving ODEs

is constructed in this work. This innovative approach combines polynomial and trigonometric functions, implemented through code
written in Maple, to develop an approximation solution. The resulting block techniques exhibit continuous coefficients and possess
key properties of consistency, zero stability, and convergence. These characteristics contribute to a robust methodology that ensures
reliability in solving ODEs, presenting a promising avenue for further exploration and application in this field.
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