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Abstract

Wreath product, a powerful construction in group theory, has found extensive applications in various areas of mathematics and
computer science. In this paper, we present a comprehensive analysis of coding matrices associated with wreath products. The
coding matrices for the wreath product of two cyclic finite groups were given for the first time. It gives a generalization of the
coding matrices for the semi-direct product. We found out that the coding matrix of wreath product really has the same shape as
the one for semidirect product and gave the RW-matrix for the coding matrix. An example was showed to illustrate the assertions.
Conditions were also given for different wreath products of cyclic groups and that gives different orders for the wreath products.
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1. Introduction

Many people have work on coding matrices over the years, [1] showed that the group ring RG of a group G of order
n over a ring R is isomorphic to a certain ring of n × n matrices over R. At the instance that the ring R has an identity
element and no zero-divisors, the representation made it easier to describe the units and zero-divisors of the group ring
in terms of properties of these matrices and where applicable in terms of the determinant of the matrices. Such rings
of matrices which turn up as isomorphic to certain group rings include circulant matrices, Toeplitz matrices, Walsh-
Toeplitz matrices, circulant or Toeplitz combined with Hankel matrices and block-type circulant matrices. Group rings
thus can be considered to be a generalisation of these rings of matrices, which are useful in communications, signal
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processes, time series analysis and somewhere else. The new construction method for codes using encodings from
group rings is described and presented in [2]. The new construction consisted mainly of two types: zero-divisor and
unit-derived codes and previous codes from group rings focused on ideals. They focused on the encodings themselves,
which only under very limited conditions result in ideals. They used the result that a group ring is isomorphic to a
certain well-defined ring of matrices, and accordingly every group ring element has an associated matrix which allows
matrix algebra to be used as needed in the production of codes, enabling the creation of standard generator and check
matrices. [3] presented a general method for constructing convolutional codes from units in Laurent series over
matrix rings. In the study [4], the algebra of groups ring and matrix rings is used for the construction and analysis of
systems of zero-divisor and unit-derived codes which are more general than codes from ideals in group rings. They
expanded the space of linear block codes, offering additional flexibility in terms of the desired properties as algebraic
formulations, while having readily available generator and check matrices. It is further showed how the codes may be
derived, showing particular cases such as self-dual codes and codes from dihedral group rings.

The BN-pair structure is used in [5] for the general linear group to write a suitable listing of the elements of the
finite group GL(2,q) which they used to determine its ring of matrices. This method of identifying finite group ring
with ring of matrices was used effectively to construct linear codes, furthering from the ring-theoretic structure of
both group rings and the ring of matrices. The coding matrix of the semi-direct product group of two cyclic groups os
determined in [6] in order to generalize the known result for the dihedral group, which is known to be a semi-direct
of the two cyclic groups. in [7], a well-established isomorphism between a group ring and a ring of matrices and
constructed certain self-dual and formally self-dual codes over a finite commutative Frobenius ring. He found out that
there are interesting relationships between the Automorphism group of the code produced and the underlying group
in the group ring. He further described all possible group algebras that can be used to construct the well-known binary
extended Golay code.

The paper provides theoretical insights into the properties and relationships between coding matrices and wreath
products. These insights deepen our theoretical understanding of coding matrices and their characterization in terms
of wreath product parameter.

We give some basic definitions in the following section.

2. Basic Definition

Definition 2.1[1]: Let RG denote the group ring of the group G over the ring R. A non-zero element z in a ring W
is said to be a zero-divisor in W if and only if there exists a non-zero element r ∈ W with z ∗ r = 0. When W has
an identity 1W say u is a unit in W if and only if there exists an element w ∈ W with u ∗ w = 1W . The group of units
of W is denoted by U(W). We shall be particularly interested in zero-divisors and units in RG.

It is shown for example that over a field every element is either a unit or a zero-divisor;
This was known for finite fields.
Let G be a finite group of order n, and let {g1, g2, . . . , gn} be the elements of G, let M (G) be of the form

M (G) =


g−1

1 g1 g−1
1 g2 · · · g−1

1 gn

g−1
2 g1 g−1

2 g2 · · · g−1
2 gn

...
g−1

n g1

...
g−1

n g2

. . .

· · ·

...
g−1

n gn


n×n

=


1 g−1

1 g2 · · · g−1
1 gn

g−1
2 g1 1 · · · g−1

2 gn
...

g−1
n g1

...
g−1

n g2

. . .

· · ·

...
1


n×n

Then for each u =
∑n

i=1 αgi gi ∈ RG, define the matrix M(RG,w) ∈ Mn(R) as follows:

M (RG,w) =


αg−1

1 g1
αg−1

1 g2
· · · αg−1

2 gn

αg−1
2 g1

αg−1
2 g2

· · · αg−1
2 gn

...
αg−1

n g1

...
αg−1

n g2

. . .

· · ·

...
αg−1

n gn


n×n

=


α1 αg−1

1 g2
· · · αg−1

2 gn

αg−1
2 g1

α1 · · · αg−1
2 gn

...
αg−1

n g1

...
αg−1

n g2

. . .

· · ·

...
α1


n×n

It is rather clear that the shape as well as the coefficients of the coding matrix M(RG, u) depends on the group elements
of the group G. The group ring RG of a group G of order n over a ring R is isomorphic to a certain ring of (n × n)
matrices over R [1].
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Theorem 2.2[1]: Given a listing of the elements of a group G of order n there is a bijective ring homomorphism
between RG and the (n × n) G-matrices over R. This bijective ring homomorphism is given by σ : w 7−→ M(RG,w).

Theorem 2.3[1]: Suppose R has an identity. Then w ∈ RG is a unit in RG if and only if σ(w) is a unit in Rn×n,
where Rn×ndenotes the ring of (n × n) matrices with coefficients from R.

Definition 2.4[1,3]: Let C be an (n, k)-code and let G be a (k × n)-matrix whose rows are the basis for C, then G
is called a generator matrix for C.

A parity-check matrix H for an (n, k)-code C is a generator matrix of C⊥, such that the dual code C⊥ is defined by

C⊥ =
{
w ∈ Fn

q|w.v = 0 for all w ∈ W
}
.

Definition 2.5[1,3]: Let RG be the group ring of the group G over the ring R, where the listing of the elements of G is
given by{g1, g2, . . . , gn}. Suppose W is a submodule of RG, x ∈ W and w ∈ RG is given. Then the group ring encoding
is a mapping f : W −→ RG such that f (x) = xw or f (x) = wx. In the first case, f is a right group ring encoding
and in the letter case is a left group ring encoding.

Thus, a code C derived from a group ring encoding is the image of a group ring encoding, for a given w ∈ RG,
either C = {wx : x ∈ W} or C = {xw : x ∈ W}

The map θ : RG −→ Rn, θ
(∑n

i=1 αgi gi

)
= (α1, α2, . . . , αg) is a ring isomorphism from RG to Rn. Thus every

element in RG can be considered as n-tuple in Rn.
In the group ring the multiplication is not necessary be commute, and this allows the construction of non-

commutative.

Definition 2.6[1]: If xw = wx for all x, then the code C = {xw : x ∈ W} is said to be commutative, and otherwise
non-commutative codes.

When w is a zero-divisor, it generates a zero-divisor code and when it is a unit, it generates a unit-derived code.
The structure of codes from unit and zero-divisor in RG.

Example 2.7: Let R = Z2 = {0, 1} be the finite field of two elements and G = C4 =
〈
a|g4 = 1

〉
= {1, g, g2, g3}

be the cyclic group of order 4. Then the coding matrices for C4 is given by

1 g g2 g3

1 1 g g2 g3

g3 g3 1 g g2

g2 g2 g3 1 g
g g g2 g3 1

Thus,

M (C4) =


1 g g2 g3

g3 1 g g2

g2

g
g3

g2
1
g3

g
1


4×4

And the group ring RG = (Z2C4 =
∑

x∈C4
αxx|αx ∈ Z2 =

{
c0 + c1g + c2g2 + c3g3

∣∣∣ ci ∈ Z2

}
, such that (Z2C4,+, •) is F-

algebra. From Hurley’s theorem, Z2C4 Is embedded in M|C4 |×|C4 |(Z2). So if w ∈ Z2C4, that is , w = c0+c1g+c2g2+c3g3,
then

M (Z2C4,w) =


c0 c1 c2 c3

c3 c0 c1 c2

c2
c1

c3
c2

c0
c3

c1
c0


4×4

For the unit element w = 1 + g + g3 ∈ U (C4,w) there exists w−1 = 1 + g + g3 such that ww−1 = 1. Then we have
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M (Z2C4,w) as follows

M (Z2C4,w) =


1 1 0 1
1 1 1 0
0
1

1
0

1
1

1
1


4×4

Also, from Hurley’s theorems : If R has an identity 1R, then w ∈ RG is a unit if and only if σ(w) is a unit in Rn×n.
Hence we have the invertible matrix as follows:

U =

(
A
B

)
and V =

(
C D

)
such that UV = 14×4 in R4×4.

Taking any r rows of U as a generator matrix to define an (n, r)-code. Then we have:

A =

(
1 1 0 1
1 1 1 0

)
2×4
, B =

(
0 1 1 1
1 0 1 1

)
2×4
,C =


1 1
1 1
0
1

1
0


4×2

,D =


0 1
1 0
1
1

1
1


4×2

Such that

AC = BD =

(
1 0
0 1

)
2×2

and = BC =

(
0 0
0 0

)
2×2

. Then,

UV =

(
A
B

)
•
(

C D
)

=

(
AC AD
BC BD

)
=

(
I2 02
02 I2

)
= I4×4.

The linear code C of dimension k = 2, generated by the matrix

A =

(
1 1 0 1
1 1 1 0

)
2×4
,

is the unit derived code { = {wx | x ∈ W} , where S = {g} ⊂ G and W =
〈
g2

〉
= {1, g2}. The dual code {⊥ generated

by the matrix

DT =

(
0 1 1 1
1 0 1 1

)
2×4

With dimension n − k = 2. The dual code is considered as the submodule {⊥ = {(u−1)T y|y ∈ W
⊥

} where W⊥ =

G − S =
{
g, g3

}
. So, { = {wx | x ∈ W} = {1 + g2 + g3, 1 + g + g2}, θ

(
{
)

= {1011, 1101}, {⊥ =

{(
u−1

)T
y|y ∈ W

⊥}
=

{1 + g + g3, g + g2 + g3} θ
(
{⊥

)
= {1101, 0111}. Clearly, the matrix A is the generated matrix for an (4, 2)-code, and

DT is the parity-check matrix for this code, since this code is a generator matrix for {⊥ as defined above.

Definition 2.8[11]: Let R be a ring. A subset M with two binary operations + and • are called an R − module if
M is an abelian group under the operation + and •, and the following axioms hold:

1. rm ∈ M,

2. (r + s) m = rm + sm,

3. r (m + m1) = rm + rm1,

4. r (sm) = (rs) m,

5. 1m = m,

For all r, s ∈ R, and m,m1 ∈ M.

Definition 2.9[11]: A non-empty subset N of an R−module M is known as an R− submodule of M if for all r ∈ R,
and n, n1 ∈ N

4
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1. rn ∈ N

2. n + n1 ∈ N.

It is known that the group ring RG is an R−module with scalar multiplication defined as

r
∑
g∈G

αgg =
∑
g∈G

(
rαg

)
g

For all r ∈ R and
∑

g∈G αgg ∈ RG.

Definition 2.10[11]: Given two R−submodule M and N. A mapping T : M −→ N is called an R − linear map if
for all r ∈ R and m,m1 ∈ M,

1. T (m + m1) = T (m) + T (m1)

2. T (rm) = rT (m)

A bijective R−linear map T is known as an isomorphism. The modules M and N are said to be isomorphic if there
exists an isomorphism T between them.

Definition 2.11[11]: The kernel and the image of the R−linear map T : M −→ N are defined by
ker (T ) = {m ∈ M |T (m) = 0}, Im (T ) = {T (m) ∈ N | m ∈ M}are R−submodules of M and N , respectively. Also,

T is one-to-one if and only if ker {T } = {0}.

Proposition 2.12[11]: Let γ : g1 < g2 < · · · < gn be an ordering on G. The R−linear map Tγ : RG −→ Rn with
respect to γ is defined by

Tγ
(
αg1 g1 + αg2 g2 + · · · + αgn gn

)
= αg1αg2 . . . αgn

Is a module isomorphism and thus RG and Rn are isomorphic.
Let Fq be a finite field or order q.

Definition 2.13[11]: Let RG be a group ring where R is an integral domain, G a group. Let W be a submodule of
RG and u ∈ RG − {0}. The map fu : W −→ RG defined by fu (x) = xu, where

1. fu (x + y) = (x + y) u = xu + yu = fu (x) + fu (y)

2. fu (αx) = (αx) u = α (xu) = α fu (x), for all x, y ∈ RG and α ∈ R is called an R−linear map.

Definition 2.14[11]: Let RG be a group ring. Suppose W is a R-submodule of RG and u ∈ RG− {0}. A one-to-one
mapping fu : W −→ RG given by fu (u) = xu is known as a group ring encoding function. The RG -code with
generator u comparative to the submodule W, denoted CG(W, u), is the image of fu , that is

CG (W, u) = fu [W] = Wx

Note that CG(W, u) is an R -submodule of RG. Clearly, W is isomorphic to CG(W, u) under fu and thus rank (W) =

rank (CG (W, u)) Suppose N is a basis of W. It can be verified easily that CG (W, u) = Wu = LR(Nu). Since fu is
one-to-one, the linear independency of N over R guarantees the linear independency of Nu over R. Hence, Nu is a
basis of CG(W, u) and rank (CG (W, u)) = |Nu| = |N|.

Let the RG code CG (W, u) = CG (LR(N), u) be represented as CG (N, u).

Definition 2.15[11]: Let u ∈ RG − {0} and N ⊆ G with Nu as linearly independent. The RG-code CG (N, u) is
known as a zero-divisor code if u is a zero-divisor.

Otherwise, CG (N, u) is known as a unit-derived code when u ∈ RG is a unit.

5
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Since CG (N, u) over Fq is the image of an injective linear transformation. Let γ : g1 < g2 < · · · < gn be an
ordering on G. The isomorphism Tγ : FqG −→ Fn

q with respect to γ is defined by

Tγ (α1g1 + α2g2 + · · · + αngn) = α1α2 . . . αn

Hence, each codeword in each FqG -code CG (N, u) will be related to its isomorphic image under Tγ and CG (N, u)
will be allied to Tγ [CG (N, u)] = Im

(
Tγ|CG(N,u)

)
, which is a linear code of length n.

Nu is a basis of CG (N, u) . Thus, Tγ[Nu] is a basis for the linear code Tγ[CG (N, u)].
Example 2.16: Consider the group ring F2 [C2wrC2] where C2wrC2 = {1, x, y, xy, z, xz, yz, xyz} (see Definition

3.1)
Let γ : 1 < x < y < xy < z < xz < yz < xyz and let u = 1 + y, N = {1, x}, N1 = {1, z} and N3 = {1, y}, then

CC2wrC2 (N, u) = LF2 ({1 + y, x + xy}) = {0, 1 + y, x + xy, 1 + x + y + xy}

Tγ[CC2wrC2
(N, u)] = {00000000, 10100000, 01010000, 11110000}

CC2wrC2 (N1, u) = LF2 ({1 + y, z + yz}) = {0, 1 + y, z + yz, 1 + y + z + yz}

Tγ[CC2wrC2
(N1, u)] = {00000000, 10100000, 00001010, 10101010}

CC2wrC2 (N2, u) = LF2 ({1 + y, 1 + y}) = {0, 1 + y, 1 + y, 0}

Tγ[CC2wrC2
(N2, u)] = {00000000, 10100000, 10100000, 00000000}

Section 3 gives the definition of wreath products and lists the elements of the wreath products of two finite cyclic
groups ( see [8,9,10]).

3. Coding Matrices of Wreath Product of Groups

Definition 3.1[10]: Let C and D be groups and suppose D acts on the nonempty set ∆. Then the wreath product
of C by D is defined with respect to this action; it is defined to be the semidirect product C∆ o D, where D acts on the
group C∆ via

f d (γ) B f (γd−1
)

for all f ∈ C∆,γ ∈ ∆ and d ∈ D.
We denote this group by CwrD, and call the subgroup B B {( f , 1)| f∈ C∆ � C∆} the base group of the wreath

product.
Again, it is helpful to look at the case where ∆ is finite, say ∆ = {1, 2, . . . , n}. In this case we can identify the base

group B with the direct product C ×C × · · · ×C (n factors).
Obviously, |CwrD| = |C|n |D|.

Example 3.2: The wreath product of C3wrC2 = C2
3oC2; C2

3 =
〈
x | x3 = 1

〉
×
〈
y | y3 = 1

〉
and C2 =

〈
z | z2 = 1

〉
. The

listing of elements of C3wrC2 are: 1, x, x2, y, xy, x2y, y2, xy2, x2y2, z, xz, x2z, yz, xyz, x2yz, y2z, xy2z, x2y2z. The action
of C2 on C2

3 given by φ : C2 −→ Aut
(
C2

3

)
such that Aut(C2

3) is defined as

Aut
(
C2

3

)
= {φ : x −→ x2, y −→ y2}

This gives the Wreath products with the presentation〈
x, y, z | x3 = y3 = z2 = 1, zxz−1 = x2, zyz−1 = y2

〉

6



Suleiman & Khammash / African Scientific Reports 2 (2023) 98 7

wr 1 x x2 y xy x2y y2 xy2 x2y2 z xz x2z yz xyz x2yz y2z xy2z x2y2z
1 1 x x2 y xy x2y y2 xy2 x2y2 z xz x2z yz xyz x2yz y2z xy2z x2y2z
x2 x2 1 x x2y y xy x2y2 y2 xy2 x2z z xz x2yz yz xyz x2y2z y2z xy2zz
x x x2 1 xy x2y y xy2 x2y2 y2 xz x2z z xyz x2yz yz xy2z x2y2z y2z
y2 y2 xy2 x2y2 1 x x2 y xy x2y y2z xy2z x2y2z z xz x2z yz xyz x2yz
x2y2 x2y2 y2 xy2 x2 1 x x2y y xy x2y2z y2z xy2zz x2z z xz x2yz yz xyz
xy2 xy2 x2y2 y2 x x2 1 xy x2y y xy2z x2y2z y2z xz x2z z xyz x2yz yz
y y xy x2y y2 xy2 x2y2 1 x x2 yz xyz x2yz y2z xy2z x2y2z z xz x2z
x2y x2y y xy x2y2 y2 xy2 x2 1 x x2yz yz xyz x2y2z y2z xy2zz x2z z xz
xy xy x2y y xy2 x2y2 y2 x x2 1 xyz x2yz yz xy2z x2y2z y2z xz x2z z
z z x2z xz y2z x2y2z xy2z yz x2yz xyz 1 x2 x y2 x2y2 xy2 y x2y xy
xz xz z x2z xy2z y2z x2y2z xyz yz x2yz x 1 x2 xy2 y2 x2y2 xy y x2y
x2z x2z xz z x2y2z xy2z y2z x2yz xyz yz x2 x 1 x2y2 xy2 y2 x2y xy y
yz yz x2yz xyz z x2z xz y2z x2y2z xy2z y x2y xy 1 x2 x y2 x2y2 xy2

xyz xyz yz x2yz xz z x2z xy2z y2z x2y2z xy y x2y x 1 x2 xy2 y2 x2y2

x2yz x2yz xyz yz x2z xz z x2y2z xy2z y2z x2y xy y x2 x 1 x2y2 xy2 y2

y2z y2z x2y2z xy2z yz x2yz xyz z x2z xz y2 x2y2 xy2 y x2y xy 1 x2 x
xy2z xy2z y2z x2y2z xyz yz x2yz xz z x2z xy2 y2 x2y2 xy y x2y x 1 x2

x2y2z x2y2z xy2z y2z x2yz xyz yz x2z xz z x2y2 xy2 y2 x2y xy y x2 x 1

It follows that the coding matrix

M (C3wrC2) =

(
T0 H2
H3 T1

)
18×18

Is a block matrix consisting of 4 = 2×2 matrices of size
(
32 × 32

)
−matrices from which 2 = (2 − 1)2 + 1 are circulant

(Toeplitz) matrices and 2 = 2(2 − 1) Hankel-type matrices.

Group codes
Definition 3.3[2]: A unit w ∈ RG is orthogonal if and only if its inverse is wT (i.e. wwT = 1).

Self-dual codes: Some self-dual codes in RG can be formed as follows: suppose that |G| = n = 2m and G =

{g1, g2, . . . , gn}. Let w ∈ RG satisfy:

1. w2 = 0,

2. w = wT so that wwT = 0,

3. u and its corresponding matrix U have rank m.

Then w generates a self-dual code.
From Example 3.2, W = C3wrC2 =

{
1, x, x2, y, xy, x2y, y2, xy2, x2y2, z, xz, x2z, yz, xyz, x2yz, y2z, xy2z, x2y2z

}
. We

then form the group ring Z2W. Consider w = y + yz
(
1 + xy + x2y2

)
∈ Z2W. Then w2 = 0. Thus rank u ≤ 9. The

RW-matrix of u is

U =

(
I B
B I

)
From which it follows that the rank u = 9. We found the distance to be . . .

Example of unit derived codes. If w2 = 0, then (1 + w)2 = 1 over Z2. Thus a = 1 + w satisfies
a2 = aaT = 1, and this gives a series of orthogonal units.

7
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An element w ∈ Z2W can be written as

w = α0+α1x+α2x2+α3y+α4xy+α5x2y+α6y2+α7xy2+α8x2y2+β0z+β1xz+β2x2z+β3yz+β4xyz+β5x2yz+β6y2z+β7xy2z+β8x2y2z

The associated RW-matrix W is then

U =



α0 α1 α2
α2 α0 α1
α1 α2 α0

α3 α4 α5
α5 α3 α4
α4 α5 α3

α6 α7 α8
α8 α6 α7
α7 α8 α6

α6 α7 α8
α8 α6 α7
α7 α8 α6

α0 α1 α2
α2 α0 α1
α1 α2 α0

α3 α4 α5
α5 α3 α4
α4 α5 α3

α3 α4 α5
α5 α3 α4
α4 α5 α3

α6 α7 α8
α8 α6 α7
α7 α8 α6

α0 α1 α2
α2 α0 α1
α1 α2 α0

β0 β1 β2
β2 β0 β1
β1 β2 β0

β3 β4 β5
β5 β3 β4
β4 β5 β3

β6 β7 β8
β8 β6 β7
β7 β8 β6

β6 β7 β8
β8 β6 β7
β7 β8 β6

β0 β1 β2
β2 β0 β1
β1 β2 β0

β3 β4 β5
β5 β3 β4
β4 β5 β3

β3 β4 β5
β5 β3 β4
β4 β5 β3

β6 β7 β8
β8 β6 β7
β7 β8 β6

β0 β1 β2
β2 β0 β1
β1 β2 β0

β0 β2 β1
β1 β0 β2
β2 β1 β0

β6 β8 β7
β7 β6 β8
β8 β7 β6

β3 β5 β4
β4 β3 β5
β5 β4 β3

β3 β5 β4
β4 β3 β5
β5 β4 β3

β0 β2 β1
β1 β0 β2
β2 β1 β0

β6 β8 β7
β7 β6 β8
β8 β7 β6

β6 β8 β7
β7 β6 β8
β8 β7 β6

β3 β5 β4
β4 β3 β5
β5 β4 β3

β0 β2 β1
β1 β0 β2
β2 β1 β0

α0 α2 α1
α1 α0 α2
α2 α1 α0

α6 α8 α7
α7 α6 α8
α8 α7 α6

α3 α5 α4
α4 α3 α5
α5 α4 α3

α3 α5 α4
α4 α3 α5
α5 α4 α3

α0 α2 α1
α1 α0 α2
α2 α1 α0

α6 α8 α7
α7 α6 α8
α8 α7 α6

α6 α8 α7
α7 α6 α8
α8 α7 α6

α3 α5 α4
α4 α3 α5
α5 α4 α3

α0 α2 α1
α1 α0 α2
α2 α1 α0


This can be written as U =

(
A B

BT AT

)
, where A is a circulant matrix,

Example 3.4: The wreath product of CmwrCn = Cn
m o Cn;

Cn
m =

〈
x1 | xm

1 = 1
〉
×

〈
x2 | xm

2 = 1
〉
× · · · ×

〈
xn | xm

n = 1
〉

and Cn = 〈z | zn = 1〉. The listing of elements of CmwrCn

are: 1, x1, . . . , xm−1
1 , x2, x1x2, . . . , xm−1

1 x2, x2
2, x1x2

2, . . . , x
m−1
1 x2

2, . . . , x
m−1
2 , x1xm−1

2 , . . . , xm−1
1 xm−1

2 , . . .

, xn, x1xn, . . . , xm−1
1 xn, x2xn, . . . , xm−1

2 xn, x1xm−1
2 xn, . . . , xm−1

1 xm−1
2 xn, x2

n, . . . , x
m−1
1 xm−1

2 xn−1
n , . . . ,

x1x2 . . . xn, . . . , xm−1
1 xm−1

2 . . . xn−1
n , z, x1z, . . . , xm−1

1 z, x2z, x1x2z, . . . , xm−1
1 x2z, x2

2z, x1x2
2z, . . . ,

xm−1
1 x2

2z, . . . , xm−1
2 z, x1xm−1

2 z, . . . , xm−1
1 xm−1

2 z, . . . , xnz, x1xnz, . . . , xm−1
1 xnz, x2xnz, . . . ,

xm−1
2 xnz, x1xm−1

2 xnz, . . . , xm−1
1 xm−1

2 xnz, x2
nz, . . . , xm−1

1 xm−1
2 xn−1

n z, . . . , x1x2 . . . xnz, . . . , xm−1
1 xm−1

2 . . . xn−1
n z,

. . . , zn−1, x1zn−1, . . . , xm−1
1 zn−1, x2zn−1, x1x2zn−1, . . . , xm−1

1 x2zn−1, x2
2zn−1, x1x2

2zn−1, . . . , xm−1
1 x2

2zn−1,

. . . , xm−1
2 zn−1, x1xm−1

2 zn−1, . . . , xm−1
1 xm−1

2 zn−1, . . . , xnzn−1, x1xnzn−1, . . . , xm−1
1 xnzn−1, x2xnzn−1, . . .

, xm−1
2 xnzn−1, x1xm−1

2 xnzn−1, . . . , xm−1
1 xm−1

2 xnzn−1, x2
nzn−1, . . . , xm−1

1 xm−1
2 xn−1

n zn−1, . . . ,

x1x2 . . . xnzn−1, . . . , xm−1
1 xm−1

2 . . . xn−1
n zn−1. The action of Cn on Cn

m given by φ : Cn −→ Aut
(
Cn

m
)

such that Aut(Cn
m) is

defined as
Aut

(
Cn

m
)

=
{
φ : x1 −→ xm−1

1 , x2 −→ xm−1
2 , . . . , xn −→ xm−1

n

}
Which gives the Wreath products with the presentation〈

x1, x2, . . . , xn, z | xm
1 = xm

2 = · · · = xm
n = zm = 1, zx1z−1 = xm−1

1 , zx2z−1 = xm−1
2 , . . . , zxnz−1 = xm−1

n

〉
Proposition 3.5: The wreath product
CmwrCn = Cn

moCn =
〈
x1, x2, . . . , xn, z | xm

1 = xm
2 = · · · = xm

n = zm = 1, zx1z−1 = xm−1
1 , zx2z−1 = xm−1

2 , . . . , zxnz−1 = xm−1
n

〉
8
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has the coding matrix of the form
T0 H1 · · · Hn−1

Hn T1 · · · Tn−1
...

H2(n−1)

...
T(n−2)(n−1)

. . .

· · ·

...
T(n−1)2


mnn×mnn

Consisting of n2 matrices all of size (mn × mn) from which the (n − 1)2 + 1 matrices T0,T1, . . . ,T(n−1)2 are Circulant
(Toepltz) and the 2(n − 1) marices H1,H2, . . . ,H2(n−1) are Hankel-type matrices.

So the coding matrix of wreath product really has the same shape as the one for semidirect product.

4. Structures of CmwrCn for the pair (m, n)

1. If m = n, then CmwrCm = Cm+1
m with |CmwrCm| = mm+1.

2. If gcd (m, n) = 1 and gcd (m, n) , 1, then |CmwrCn| = mnn.

3. If gcd (p, n) = 1 where p is a prime number, then
∣∣∣CpwrCn

∣∣∣ = pnn.

4. If gcd (m, p) = 1 where p is a prime number, then
∣∣∣CmwrCp

∣∣∣ = mp p

5. Conclusion

In conclusion, we were able to give the coding matrix of wreath product of two cyclic finite groups which is a
generalization of the semi-direct product proved in [6] with examples. We found out that the coding matrix of wreath
products of group has the same shape with that of semi-direct product.
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